| |||||||||||||
Els - An economic lot-sizing problem solved by cut-and-branch and branch-and-cut heuristics Description The version 'xbels' of this example shows how to implement cut-and-branch (= cut
generation at the root node of the MIP search) and 'xbelsc' implements a
branch-and-cut (= cut generation at the MIP search tree nodes)
algorithm using the cut manager.
Source Files By clicking on a file name, a preview is opened at the bottom of this page.
xbels.c /******************************************************** BCL Example Problems ==================== file xbels.c ```````````` Economic lot sizing, ELS, problem, solved by adding (l,S)-inequalities) in several rounds looping over the root node. ELS considers production planning over a horizon of T periods. In period t, t=1,...,T, there is a given demand DEMAND[t] that must be satisfied by production prod[t] in period t and by inventory carried over from previous periods. There is a set-up up cost SETUPCOST[t] associated with production in period t. The unit production cost in period t is PRODCOST[t]. There is no inventory or stock-holding cost. (c) 2008-2024 Fair Isaac Corporation author: S.Heipcke, 2001, rev. Mar. 2011 ********************************************************/ #include <stdio.h> #include "xprb.h" #include "xprs.h" #define EPS 1e-6 #define T 6 /* Number of time periods */ /****DATA****/ int DEMAND[] = { 1, 3, 5, 3, 4, 2}; /* Demand per period */ int SETUPCOST[] = {17,16,11, 6, 9, 6}; /* Setup cost per period */ int PRODCOST[] = { 5, 3, 2, 1, 3, 1}; /* Production cost per period */ int D[T][T]; /* Total demand in periods t1 - t2 */ XPRBvar prod[T]; /* Production in period t */ XPRBvar setup[T]; /* Setup in period t */ /***********************************************************************/ void mod_els(XPRBprob prob) { int s,t,k; XPRBctr ctr; for(s=0;s<T;s++) for(t=0;t<T;t++) for(k=s;k<=t;k++) D[s][t] += DEMAND[k]; /****VARIABLES****/ for(t=0;t<T;t++) { prod[t]=XPRBnewvar(prob,XPRB_PL, XPRBnewname("prod%d",t+1),0,XPRB_INFINITY); setup[t]=XPRBnewvar(prob,XPRB_BV, XPRBnewname("setup%d",t+1),0,1); } /****OBJECTIVE****/ ctr = XPRBnewctr(prob,"OBJ",XPRB_N); /* Minimize total cost */ for(t=0;t<T;t++) { XPRBaddterm(ctr, setup[t], SETUPCOST[t]); XPRBaddterm(ctr, prod[t], PRODCOST[t]); } XPRBsetobj(prob,ctr); /****CONSTRAINTS****/ /* Production in period t must not exceed the total demand for the remaining periods; if there is production during t then there is a setup in t */ for(t=0;t<T;t++) { ctr = XPRBnewctr(prob,"Production",XPRB_L); XPRBaddterm(ctr, setup[t], -D[t][T-1]); XPRBaddterm(ctr, prod[t], 1); } /* Production in periods 0 to t must satisfy the total demand during this period of time */ for(t=0;t<T;t++) { ctr = XPRBnewctr(prob,"Demand",XPRB_G); for(s=0;s<=t;s++) XPRBaddterm(ctr, prod[s], 1); XPRBaddterm(ctr, NULL, D[0][t]); } } /**************************************************************************/ /* Cut generation loop at the top node: */ /* solve the LP and save the basis */ /* get the solution values */ /* identify and set up violated constraints */ /* load the modified problem and load the saved basis */ /**************************************************************************/ void solve_els(XPRBprob prob) { double objval; /* Objective value */ int t,l; int starttime; int ncut, npass, npcut; /* Counters for cuts and passes */ double solprod[T], solsetup[T]; /* Solution values for var.s prod & setup */ double ds; XPRBbasis basis; XPRBctr cut; starttime=XPRBgettime(); XPRSsetintcontrol(XPRBgetXPRSprob(prob),XPRS_CUTSTRATEGY, 0); /* Disable automatic cuts - we use our own */ XPRSsetintcontrol(XPRBgetXPRSprob(prob),XPRS_PRESOLVE, 0); /* Switch presolve off */ ncut = npass = 0; do { npass++; npcut = 0; XPRBlpoptimize(prob,"p"); /* Solve the LP */ basis=XPRBsavebasis(prob); /* Save the current basis */ objval = XPRBgetobjval(prob); /* Get the objective value */ /* Get the solution values: */ for(t=0;t<T;t++) { solprod[t]=XPRBgetsol(prod[t]); solsetup[t]=XPRBgetsol(setup[t]); } /* Search for violated constraints: */ for(l=0;l<T;l++) { for (ds=0.0, t=0; t<=l; t++) { if(solprod[t] < D[t][l]*solsetup[t] + EPS) ds += solprod[t]; else ds += D[t][l]*solsetup[t]; } /* Add the violated inequality: the minimum of the actual production prod[t] and the maximum potential production D[t][l]*setup[t] in periods 0 to l must at least equal the total demand in periods 0 to l. sum(t=1:l) min(prod[t], D[t][l]*setup[t]) >= D[0][l] */ if(ds < D[0][l] - EPS) { cut = XPRBnewctr(prob,XPRBnewname("cut%d",ncut+1), XPRB_G); XPRBaddterm(cut, NULL, D[0][l]); for(t=0;t<=l;t++) { if (solprod[t] < D[t][l]*solsetup[t] + EPS) XPRBaddterm(cut, prod[t], 1); else XPRBaddterm(cut, setup[t], D[t][l]); } ncut++; npcut++; } } printf("Pass %d (%g sec), objective value %g, cuts added: %d (total %d)\n", npass, (XPRBgettime()-starttime)/1000.0, objval, npcut, ncut); if(npcut==0) printf("Optimal integer solution found:\n"); else { XPRBloadmat(prob); /* Reload the problem */ XPRBloadbasis(basis); /* Load the saved basis */ XPRBdelbasis(basis); /* No need to keep the basis any longer */ } } while(npcut>0); /* Print out the solution: */ for(t=0;t<T;t++) printf("Period %d: prod %g (demand: %d, cost: %d), setup %g (cost: %d)\n", t+1, XPRBgetsol(prod[t]), DEMAND[t], PRODCOST[t], XPRBgetsol(setup[t]), SETUPCOST[t]); } /***********************************************************************/ int main(int argc, char **argv) { XPRBprob prob; prob=XPRBnewprob("Els"); /* Initialize a new problem in BCL */ mod_els(prob); /* Model the problem */ solve_els(prob); /* Solve the problem */ return 0; } | |||||||||||||
© Copyright 2024 Fair Isaac Corporation. |