![]() | |||||||||||||
| |||||||||||||
Els - An economic lot-sizing problem solved by cut-and-branch and branch-and-cut heuristics Description The version 'ELS' of this example shows how to implement cut-and-branch (= cut
generation at the root node of the MIP search) and 'ELSCut' implements a
branch-and-cut (= cut generation at the MIP search tree nodes)
algorithm using the cut manager.
Source Files By clicking on a file name, a preview is opened at the bottom of this page.
ELS.java // (c) 2023-2024 Fair Isaac Corporation import static com.dashoptimization.objects.Utils.scalarProduct; import static com.dashoptimization.objects.Utils.sum; import com.dashoptimization.ColumnType; import com.dashoptimization.DefaultMessageListener; import com.dashoptimization.XPRSconstants; import com.dashoptimization.XPRSenumerations; import com.dashoptimization.objects.LinExpression; import com.dashoptimization.objects.LinTermMap; import com.dashoptimization.objects.Variable; import com.dashoptimization.objects.XpressProblem; /** * Economic lot sizing, ELS, problem. Solved by adding (l,S)-inequalities in * several rounds looping over the root node. * * ELS considers production planning over a horizon of T periods. In period t, * t=1,...,T, there is a given demand DEMAND[t] that must be satisfied by * production prod[t] in period t and by inventory carried over from previous * periods. There is a set-up up cost SETUPCOST[t] associated with production in * period t. The unit production cost in period t is PRODCOST[t]. There is no * inventory or stock-holding cost. */ public class ELS { private static final double EPS = 1e-6; private static final int T = 6; /* Number of time periods */ /* Data */ private static final double[] DEMAND = { 1, 3, 5, 3, 4, 2 }; /* Demand per period */ private static final double[] SETUPCOST = { 17, 16, 11, 6, 9, 6 }; /* Setup cost / period */ private static final double[] PRODCOST = { 5, 3, 2, 1, 3, 1 }; /* Prod. cost / period */ private static double[][] D; /* Total demand in periods t1 - t2 */ /* Variables and constraints */ private static Variable[] prod; /* Production in period t */ private static Variable[] setup; /* Setup in period t */ /***********************************************************************/ private static void modEls(XpressProblem p) { D = new double[T][T]; for (int s = 0; s < T; s++) for (int t = 0; t < T; t++) for (int k = s; k <= t; k++) D[s][t] += DEMAND[k]; // Variables prod = p.addVariables(T).withType(ColumnType.Continuous).withName(t -> String.format("prod%d", t + 1)) .toArray(); setup = p.addVariables(T).withType(ColumnType.Binary).withName(t -> String.format("setup%d", t + 1)).toArray(); // Objective: Minimize total cost p.setObjective(sum(scalarProduct(setup, SETUPCOST), scalarProduct(prod, PRODCOST)), XPRSenumerations.ObjSense.MINIMIZE); // Constraints // Production in period t must not exceed the total demand for the // remaining periods; if there is production during t then there // is a setup in t // for all t in [0,T[ // prod[t] <= setup[t] * D[t][T-1] p.addConstraints(T, t -> prod[t].leq(setup[t].mul(D[t][T - 1])).setName(String.format("Production_%d", t))); // Production in periods 0 to t must satisfy the total demand // during this period of time // for all t in [0,T[ // sum(s in [0,t+1[) prod[s] >= D[0][t] p.addConstraints(T, t -> sum(t + 1, s -> prod[s]).geq(D[0][t]).setName(String.format("Demand_%d", t))); p.writeProb("ELS.lp", "l"); } /**************************************************************************/ /* Cut generation loop at the top node: */ /* solve the LP and save the basis */ /* get the solution values */ /* identify and set up violated constraints */ /* load the modified problem and load the saved basis */ /**************************************************************************/ private static void solveEls(XpressProblem p) { p.callbacks.addMessageCallback(DefaultMessageListener::console); /* Disable automatic cuts - we use our own */ p.controls().setCutStrategy(XPRSconstants.CUTSTRATEGY_NONE); /* Switch presolve off */ p.controls().setPresolve(XPRSconstants.PRESOLVE_NONE); int ncut = 0, npass = 0, npcut = 0; long starttime = System.currentTimeMillis(); double[] sol; do { p.writeProb("model" + npass + ".lp", "l"); npass++; npcut = 0; // Solve the LP-problem p.lpOptimize(); if (p.attributes().getSolStatus() != XPRSenumerations.SolStatus.OPTIMAL) throw new RuntimeException("failed to optimize with status " + p.attributes().getSolStatus()); // Get the solution values: sol = p.getSolution(); // Search for violated constraints: for (int l = 0; l < T; l++) { double ds = 0.0; for (int t = 0; t <= l; t++) { if (prod[t].getValue(sol) < D[t][l] * setup[t].getValue(sol) + EPS) { ds += prod[t].getValue(sol); } else { ds += D[t][l] * setup[t].getValue(sol); } } /* * Add the violated inequality: the minimum of the actual production prod[t] and * the maximum potential production D[t][l]*setup[t] in periods 0 to l must at * least equal the total demand in periods 0 to l. sum(t=1:l) min(prod[t], * D[t][l]*setup[t]) >= D[0][l] */ if (ds < D[0][l] - EPS) { LinExpression cut = new LinTermMap(0); for (int t = 0; t <= l; t++) { if (prod[t].getValue(sol) < D[t][l] * setup[t].getValue(sol) + EPS) cut.addTerm(prod[t], 1.0); else cut.addTerm(setup[t], D[t][l]); } p.addConstraint(cut.geq(D[0][l]).setName(String.format("cut_%d", ncut + 1))); ncut++; npcut++; } } System.out.println(String.format("Iteration %d, %.2f sec, objective value: %f, cuts added: %d (total %d)", npass, (System.currentTimeMillis() - starttime) / 1000.0, p.attributes().getObjVal(), npcut, ncut)); if (npcut == 0) System.out.println("Optimal integer solution found:"); } while (npcut > 0); // Print out the solution: for (int t = 0; t < T; t++) { System.out.println(String.format("Period %d: prod %.1f (demand: %.0f, cost: %.0f), setup %.0f (cost %.0f)", t + 1, prod[t].getValue(sol), DEMAND[t], PRODCOST[t], setup[t].getValue(sol), SETUPCOST[t])); } } public static void main(String[] args) { try (XpressProblem prob = new XpressProblem()) { modEls(prob); // Model the problem solveEls(prob); // Solve the problem } } }
| |||||||||||||
© Copyright 2024 Fair Isaac Corporation. |