![]() | |||||||||||
| |||||||||||
Implementing user functions returning their own derivatives Description Demonstrates how black box functions that ara capable to calculate their own partial derivatives may be optimized using Xpress NonLinear Further explanation of this example: 'Xpress NonLinear Reference Manual'
Source Files By clicking on a file name, a preview is opened at the bottom of this page.
ComplexUserFunctions.c /*********************************************************************** Xpress Optimizer Examples ========================= file ComplexUserFunctions.c `````````````````````````` Implement a problem using complex user functions This problem demonstrates how to 1. add user functions implemented locally to an SLP problem, 2. track how function evaluations happen, 3. define user functions that return derivatives, 4. solve a problem iteration by iteration, 5. optionally write out the linearization of each iteration for analysis. Solve Minimize t (opt = 27) s.t. t = y ^ 2 + z - v + w ^ 2 x ^ 2 + t ^ 2 <= 730 (= 27*27+1) and 1 <= x <= 2 2 <= y <= 3 3 <= z <= 4 4 <= v <= 5 5 <= w <= 6 (c) 2017 Fair Isaac Corporation ***********************************************************************/ #include <stdlib.h> #include <stdio.h> #include <stdarg.h> #include <signal.h> #include <string.h> #include <math.h> #include <float.h> #include <xprs.h> #include <xslp.h> #define WRITE_LINEARIZATIONS 0 void XPRS_CC Message(XPRSprob my_prob, void* my_object, const char *msg, int len, int msgtype) { switch(msgtype) { case 4: /* error */ case 3: /* warning */ case 2: /* dialogue */ case 1: /* information */ printf("%s\n", msg); break; default: /* exiting - buffers need flushing */ fflush(stdout); break; } } // user function implementing // y^2 + z - v + w^2 // with derivatives int XSLP_CC MyObj(double *InputValues, double *Deltas, double *Evaluation, double *Partials, void *Context) { int i; // the input values double y = 0; double z = 0; double v = 0; double w = 0; // value of the function double Value = 0; // the return array counter int nRes = 0; int nDelta = 0; // set up local variables y = InputValues[0]; z = InputValues[1]; v = InputValues[2]; w = InputValues[3]; // calculate the function value Value = y*y + z - v + w*w; // for functions returning multiple values, the first value in the return array is the calculated value at the given point *Evaluation = Value; // report calculation printf("MyObj(%f,%f,%f,%f) = %f\n",y,z,v,w,Value); // Check if we are expected to return deltas nDelta = 0; if (Deltas) { if (Deltas[0]) nDelta++; if (Deltas[1]) nDelta++; if (Deltas[2]) nDelta++; if (Deltas[3]) nDelta++; } // return deltas (y^2 + z - v + w^2) // derivatives are expected to follow only for those for which the Delta array holds a nonzero value if (nDelta) { double dtmp = 1; if (Deltas[0]) Partials[nRes++] = 2*y; if (Deltas[1]) Partials[nRes++] = 1; if (Deltas[2]) Partials[nRes++] = -1; if (Deltas[3]) Partials[nRes++] = 2*w; // report derivatives printf("Diff(%f,%f,%f,%f)) = %f,%f,%f,%f\n",y,z,v,w,2*y,dtmp,-dtmp,2*w); } // return value indicates if the function call was successful return 0; } // user function implementing // x ^ 2 + t ^ 2 // derivatives will be calculated using tangential approximation, note the perturbed calls in the output double XSLP_CC Ball(double *InputValues, void *Context) { // input values double x = 0; double t = 0; // value of the function double Value = 0; // the return array counter int nRes = 0; // set up local variables x = InputValues[0]; t = InputValues[1]; Value = x*x + t*t; // report calculation printf("Ball(%f,%f) = %f\n",x,t,Value); // for functions returning a single value, the return value is the calculated value of the function return Value; } int main(int argc, char **argv) { XPRSprob xprob = NULL; XSLPprob sprob = NULL; int ReturnValue = 0; char buffer[1000]; int loop; char *sProblem=NULL; /* Problem name */ int functionIndexMyObj; int functionIndexBall; /* Initialise Optimizer */ ReturnValue = XPRSinit(NULL); XPRSgetbanner(buffer); printf("%s\n",buffer); if (ReturnValue == 8) { printf("Unable to initialize XPRESS\n"); goto ErrorReturn; } XSLPinit(); XSLPgetbanner(buffer); printf("%s\n",buffer); /* Initialise problem object */ ReturnValue = XPRScreateprob(&xprob); if (ReturnValue != 0 && ReturnValue != 32) { printf("Unable to create XPRESS problem\n"); XPRSfree(); goto ErrorReturn; } // set messaging callback if (ReturnValue=XPRSsetcbmessage(xprob,Message,NULL)) goto ErrorReturn; // create SLP problem if (ReturnValue=XSLPcreateprob(&sprob, &xprob)) goto ErrorReturn; // use XSLP if (ReturnValue=XSLPsetintcontrol(sprob, XSLP_SOLVER, 0)) goto ErrorReturn; /* Minimize t s.t. t = y ^ 2 + z - v + w ^ 2 x ^ 2 + t ^ 2 <= 730 (27*27+1) and 1 <= x <= 2 2 <= y <= 3 3 <= z <= 4 4 <= v <= 5 5 <= w <= 6 Optimum should be 27 with y=2, z=3, v=5, w=5 (forced by objective) and x being 1 (forced by the second constrained) */ { /* Linear data */ int nRow = 2; /* Number of rows */ char sRowType[] = {'E','L'}; /* Row types */ double dRHS[] = {0,730}; /* RHS values */ double *dRange = NULL; /* Range values - none in this example */ char sRowName[] = "obj\0ball"; /* Row names */ int nCol = 7; /* Number of columns */ double dObj[] = {1,0,0,0,0,0,0}; /* Objective function coefficients */ double dLowerBd[] = {0,1,2,3,4,5,1}; /* Lower bounds on the columns */ double dUpperBd[] = {XPRS_PLUSINFINITY,2,3,4,5,6,1}; /* Upper bounds - note macro for infinity */ char sColName[] = "t\0x\0y\0z\0v\0w\0="; /* Column names */ /* Note the existence of the "=" column fixed to 1 and used to add nonlinear terms that are not coefficients to the problem */ /* Future releases of XSLP (XSLP with optimizer version 21.00 on onwards) will not require this to be done manually */ /* Matrix data */ int nColStart[] = {0,1,1,1,1,1,1,1,1}; /* Start positions of the columns in dMatElem - note there are nCol+1 entries, the last indicating where the next column would start if there was one */ int *nColElem = NULL; /* Number of elements in each column - not needed thanks to the last (optional) entry in nColStart */ int nRowInd[] = {0}; /* Row indices for the matrix elements */ double dMatElem[] = {-1}; /* Matrix elements - arranged by column */ /* Load the matrix into Optimizer */ if (ReturnValue=XPRSloadlp(xprob,"UserFunctionExample_tracking",nCol,nRow,sRowType,dRHS,dRange,dObj,nColStart,nColElem,nRowInd,dMatElem,dLowerBd,dUpperBd)) goto ErrorReturn; /* add names */ if (ReturnValue=XPRSaddnames(xprob, 1, sRowName, 0, 0)) goto ErrorReturn; if (ReturnValue=XPRSaddnames(xprob, 2, sColName, 0, 6)) goto ErrorReturn; } // Add the user functions to the SLP problem // Add MyObj as function 1 XSLPadduserfunction(sprob, "MyObj", XSLP_USERFUNCTION_VECMAPDELTA, 4, 1, 0, &MyObj, NULL, &functionIndexMyObj ); // Add Ball as function 2 XSLPadduserfunction(sprob, "Ball", XSLP_USERFUNCTION_VECMAP, 2, 1, 0, &Ball, NULL, &functionIndexBall ); // add the nonlinear functions to the slp problem { int Col; int nToken = 0; int nFormula = 0; int RowIndex[10]; int Type[100]; double Value[100]; int Equal; int FormulaStart[10]; if (ReturnValue=XSLPgetintattrib(sprob, XSLP_EQUALSCOLUMN, &Equal)) goto ErrorReturn; // future releases of SLP will not require this... if (Equal == 0) { if (ReturnValue=XPRSgetindex(xprob, 2, "=", &Equal)) goto ErrorReturn; } // MyObj(y,z,v,w) = y^2 + z - v + w^2 into row 0 RowIndex[nFormula] = 0; FormulaStart[nFormula++] = nToken; Type[nToken] = XSLP_FUN; Value[nToken++] = 1; Type[nToken] = XSLP_LB; Value[nToken++] = 0; XPRSgetindex(xprob, 2, "y", &Col); Type[nToken] = XSLP_COL; Value[nToken++] = Col; Type[nToken] = XSLP_DEL; Value[nToken++] = XSLP_COMMA; XPRSgetindex(xprob, 2, "z", &Col); Type[nToken] = XSLP_COL; Value[nToken++] = Col; Type[nToken] = XSLP_DEL; Value[nToken++] = XSLP_COMMA; XPRSgetindex(xprob, 2, "v", &Col); Type[nToken] = XSLP_COL; Value[nToken++] = Col; Type[nToken] = XSLP_DEL; Value[nToken++] = XSLP_COMMA; if (ReturnValue=XPRSgetindex(xprob, 2, "w", &Col)) goto ErrorReturn; Type[nToken] = XSLP_COL; Value[nToken++] = Col; Type[nToken] = XSLP_RB; Value[nToken++] = 0; Type[nToken] = XSLP_EOF; Value[nToken++] = 0; // BALL(x,t) = ( x ^ 2 + t ^ 2 ) into row 1 RowIndex[nFormula] = 1; FormulaStart[nFormula++] = nToken; Type[nToken] = XSLP_FUN; Value[nToken++] = 2; Type[nToken] = XSLP_LB; Value[nToken++] = 0; if (ReturnValue=XPRSgetindex(xprob, 2, "x", &Col)) goto ErrorReturn; Type[nToken] = XSLP_COL; Value[nToken++] = Col; Type[nToken] = XSLP_DEL; Value[nToken++] = XSLP_COMMA; if (ReturnValue=XPRSgetindex(xprob, 2, "t", &Col)) goto ErrorReturn; Type[nToken] = XSLP_COL; Value[nToken++] = Col; Type[nToken] = XSLP_RB; Value[nToken++] = 0; Type[nToken] = XSLP_EOF; Value[nToken++] = 0; FormulaStart[nFormula] = nToken; if (ReturnValue=XSLPaddformulas(sprob,nFormula,RowIndex,FormulaStart,0,Type,Value)) goto ErrorReturn; } if (WRITE_LINEARIZATIONS) if (ReturnValue=XSLPwriteprob(sprob,"ProblemLoaded","l")) goto ErrorReturn; // Solve problem { int Status; int nIterations = 1; if (ReturnValue=XSLPsetintcontrol(sprob, XSLP_DELTAZLIMIT , 4)) goto ErrorReturn; if (ReturnValue=XSLPsetintcontrol(sprob, XSLP_ITERLIMIT, nIterations)) goto ErrorReturn; if (ReturnValue=XSLPminim(sprob,"")) goto ErrorReturn; if (ReturnValue=XSLPgetintattrib(sprob, XSLP_STATUS, &Status)) goto ErrorReturn; if (ReturnValue=XPRSsetdblcontrol(xprob, XPRS_OUTPUTTOL, 1e-17)) goto ErrorReturn; if (WRITE_LINEARIZATIONS) if (ReturnValue=XSLPwriteprob(sprob, "Linearization1.lp","la")) goto ErrorReturn; // if stopped because of the iteration limit while (Status & XSLP_STATUS_MAXSLPITERATIONS) { char str[256]; nIterations++; sprintf(str,"Linearization%i.lp",nIterations); if (ReturnValue=XSLPsetintcontrol(sprob, XSLP_ITERLIMIT, nIterations)) goto ErrorReturn; if (ReturnValue=XSLPreminim(sprob,"")) goto ErrorReturn; if (WRITE_LINEARIZATIONS) if (ReturnValue=XSLPwriteprob(sprob, str,"ap")) goto ErrorReturn; if (ReturnValue=XSLPgetintattrib(sprob, XSLP_STATUS, &Status)) goto ErrorReturn; } } // retrieve and report the optimal solution { int nCol, Col; double *dsol; if (ReturnValue=XSLPgetintattrib(sprob,XPRS_COLS,&nCol)) goto ErrorReturn; dsol = (double *) malloc(nCol*sizeof(double)); if (!dsol) { printf("Out of memory.\n"); goto ErrorReturn; } if (ReturnValue=XSLPgetslpsol(sprob,dsol,NULL,NULL,NULL)) goto ErrorReturn; printf("Solution:\n"); if (ReturnValue=XPRSgetindex(xprob, 2, "x", &Col)) goto ErrorReturn; printf(" x = %f\n",dsol[Col]); if (ReturnValue=XPRSgetindex(xprob, 2, "y", &Col)) goto ErrorReturn; printf(" y = %f\n",dsol[Col]); if (ReturnValue=XPRSgetindex(xprob, 2, "z", &Col)) goto ErrorReturn; printf(" z = %f\n",dsol[Col]); if (ReturnValue=XPRSgetindex(xprob, 2, "v", &Col)) goto ErrorReturn; printf(" v = %f\n",dsol[Col]); if (ReturnValue=XPRSgetindex(xprob, 2, "w", &Col)) goto ErrorReturn; printf(" w = %f\n",dsol[Col]); } goto NormalReturn; ErrorReturn: printf("\nError %d",ReturnValue); NormalReturn: /* Destroy problem object and free environment */ XSLPdestroyprob(sprob); XPRSdestroyprob(xprob); XSLPfree(); XPRSfree(); return ReturnValue; }
| |||||||||||
© Copyright 2022 Fair Isaac Corporation. |