| |||||||||||
Solving a quadratically problem Description Solve a quadratic problem Further explanation of this example: 'Xpress Python Reference Manual'
Source Files By clicking on a file name, a preview is opened at the bottom of this page.
example_quadratic.py # Solve a simple quadratic optimization problem. Given a matrix # Q and a point x0, minimize the quadratic function # # x' (Q + alpha I) x # # subject to the linear system Q (x - x0) = 1 and nonnegativity on all # variables. Report solution if available # # (C) Fair Isaac Corp., 1983-2024 from __future__ import print_function import xpress as xp import numpy as np N = 10 p = xp.problem() Q = np.arange(1, N**2 + 1).reshape(N, N) x = p.addVariables(N) x0 = np.random.random(N) # c1 and c2 are two systems of constraints of size N each written as # # (x-x0)' Q = 1 # # Qx >= 0 c1 = - xp.Dot((x - x0), Q) == 1 c2 = xp.Dot(Q, x) >= 0 # The objective function is quadratic p.addConstraint(c1, c2) p.setObjective(xp.Dot(x, Q + N**3 * np.eye(N), x)) # Compact (equivalent) construction of the problem # # p = xp.problem(x, c1, c2, xp.Dot(x, Q + N**3 * np.eye(N), x)) p.optimize("") print("nrows, ncols:", p.attributes.rows, p.attributes.cols) print("solution:", p.getSolution()) p.write("test5-qp", "lp") | |||||||||||
© Copyright 2024 Fair Isaac Corporation. |