![]() | |||||||||||
| |||||||||||
Transshipment formulation of multi-period production planning Description A company wishes to plan the production of a product
for the next six weeks. The weekly demand is known for
the entire planning period. The production capacity and
the production and storage costs take different values
depending on the time period. Which is the production
plan that minimizes the total cost of production and
storage? Further explanation of this example: 'Applications of optimization with Xpress-MP', Section 8.5 'Planning the production of fiberglass' (c5fiber.mos)
Source Files By clicking on a file name, a preview is opened at the bottom of this page.
Data Files transship_graph.mos (!****************************************************** Mosel Example Problems ====================== file transship.mos `````````````````` TYPE: Production planning with time-dependent production cost (transshipment flow formulation) DIFFICULTY: 3 FEATURES: MIP problem, representation of multi-period production as flow; encoding of arcs, `exists', `create', `isodd', `getlast', inline `if' DESCRIPTION: A company wishes to plan the production of a product for the next six weeks. The weekly demand is known for the entire planning period. The production capacity and the production and storage costs take different values depending on the time period. Which is the production plan that minimizes the total cost of production and storage? FURTHER INFO: `Applications of optimization with Xpress-MP', Section 8.5 `Planning the production of fiberglass' (c) 2008 Fair Isaac Corporation author: S. Heipcke, 2002, rev. Nov. 2017 *******************************************************!) model "Transshipment" uses "mmxprs", "mmsvg" declarations NODES: range ! Production and demand nodes ! odd numbers: production capacities ! even numbers: demands ARC: dynamic array(NODES,NODES) of real ! Cost of flow on arcs WEIGHT: array(NODES) of integer ! Node weights (capacities/demand) flow: dynamic array(NODES,NODES) of mpvar ! Flow on arcs end-declarations initializations from 'transship.dat' ARC WEIGHT end-initializations forall(m,n in NODES | exists(ARC(m,n))) create(flow(m,n)) ! Objective: total cost of production and storage Cost:= sum(m,n in NODES | exists(ARC(m,n))) ARC(m,n)*flow(m,n) ! Satisfy demands (flow balance constraints) forall(n in NODES | isodd(n)=FALSE) Balance(n):= if(n>2, flow(n-2,n), 0) + flow(n-1,n) = if(n<getlast(NODES), flow(n,n+2), 0) + WEIGHT(n) ! Production capacities forall(n in NODES | isodd(n)) flow(n,n+1) <= WEIGHT(n) ! Solve the problem minimize(Cost) ! Solution printing writeln("Total cost: ",getobjval) write("Week") forall(t in 1..integer(getlast(NODES)/2)) write(strfmt(t,5)) write("\nProd.") forall(n in NODES | isodd(n)) write(strfmt(getsol(sum(m in NODES) flow(n,m)),5)) write("\nStock") forall(n in NODES | not isodd(n)) write(strfmt(getsol(sum(m in NODES) flow(n,m)),5)) writeln ! Solution drawing svgsetgraphviewbox(0,0,integer(getlast(NODES))+1,6) svgsetgraphscale(20) svgsetgraphlabels("Time","") svgaddgroup("Prod", "Production", SVG_GREEN) forall(t in 1..integer(getlast(NODES)/2)) if(getsol(sum(m in NODES) flow(t*2-1,m))>0) then svgaddarrow(t*2, 4, t*2, 1) svgaddtext(t*2, 2.5, text(getsol(sum(m in NODES) flow(t*2-1,m)))) end-if svgaddgroup("Store", "Storage", svgcolor(0,0,120)) forall(t in 1..integer(getlast(NODES)/2)-1) if (getsol(sum(m in NODES) flow(t*2,m))>0) then svgaddarrow(t*2, 1, (t+1)*2, 1) svgaddtext(t*2+1, 1.1, text(getsol(sum(m in NODES) flow(t*2,m)))) end-if svgaddgroup("Cap", "Capacities", SVG_ORANGE) svgsetstyle(SVG_TEXTANCHOR, "middle") forall(n in NODES | isodd(n)) do svgaddpoint(n+1, 4) svgaddtext(n+1, 4.2, string(WEIGHT(n))) end-do svgaddgroup("Dem", "Demands", SVG_BROWN) svgsetstyle(SVG_TEXTANCHOR, "middle") forall(n in NODES | not isodd(n)) do svgaddpoint(n, 1) svgaddtext(n, 0.5, string(WEIGHT(n))) end-do svgsave("transship.svg") svgrefresh svgwaitclose("Close browser window to terminate model execution.", 1) end-model
| |||||||||||
© Copyright 2023 Fair Isaac Corporation. |