| |||||||||||||
Portfolio optimization Description The example describes a portfolio optimization problem with parameterized risk/return measures.
It is formulated with quadratic constraints and a quadratic objective function.
Source Files By clicking on a file name, a preview is opened at the bottom of this page.
Data Files portfoliorisk.mos (!********************************************************************* Mosel NL examples ================= file portfoliorisk.mos `````````````````````` Portfolio optimization with parameterized risk/return measures Quadratic constraints / objective. (c) 2013 Fair Isaac Corporation author: S. Heipcke, Mar. 2013, rev. Jun. 2023 *********************************************************************!) model "portfoliorisk" uses "mmxnlp", "mmsystem" parameters MAXFRAC = 1.0 ! Max. fraction per asset: in ]0,1] end-parameters declarations YEARS : range ! Set of time periods ASSETS: set of string ! Set of assets RET: array(YEARS, ASSETS) of real ! Return of an asset per year LAMBDA: list of real ! Ordered list of risk aversion values NYEARS: integer ! Size of set YEARS NASSETS: integer ! Size of set ASSETS Mean: array(ASSETS) of real ! Average reward of an asset Sdev: array(ASSETS) of real ! Standard deviation of an asset Risk: array(YEARS, ASSETS) of real ! Risk measure Var: array(ASSETS, ASSETS) of real ! Variance/covariance matrix Corr: array(ASSETS, ASSETS) of real ! Correlation coefficient frac: array(ASSETS) of mpvar ! Investment fraction of an asset totalreturn: mpvar ! Expected return totalrisk: mpvar ! Risk measure (total variance) TotalCorr: nlctr ! Total correlation ObjDef: nlctr ! Objective function end-declarations ! Read data from file initializations from 'portfoliorisk.dat' RET LAMBDA end-initializations finalize(YEARS); finalize(ASSETS) NYEARS:= YEARS.size NASSETS:= ASSETS.size ! Calculate derived data ! Mean return forall(a in ASSETS) Mean(a):= sum(y in YEARS) RET(y,a)/NYEARS ! Risk measure forall(y in YEARS, a in ASSETS) Risk(y, a):= RET(y,a) - Mean(a) ! Standard deviation forall(a in ASSETS) Sdev(a):= sqrt(sum(y in YEARS) Risk(y,a)^2)/NYEARS ! Variance/Covariance forall(a1, a2 in ASSETS) Var(a1,a2):= (sum(y in YEARS) Risk(y,a1)*Risk(y,a2))/NYEARS ! Correlation coefficient (normalized covariance) forall(a1, a2 in ASSETS) Corr(a1,a2):= Var(a1,a2)/sqrt(Var(a1,a1)*Var(a2,a2)) writeln("NASSETS=", NASSETS) writeln("NYEARS=", NYEARS) forall(a in ASSETS) writeln(strfmt(a,-11), ": Mean=", Mean(a), ", StdDev=", Sdev(a)) ! State variable bounds and initial values forall (a in ASSETS) do 0 <= frac(a); frac(a) <= MAXFRAC ! Spend between 0% and MAXFRAC% per asset setinitval(frac(a),1.0/NASSETS) end-do ! Auxiliary variables for the definition of the objective function totalreturn = sum(a in ASSETS) Mean(a)*frac(a) totalreturn is_free totalrisk = (sum(y in YEARS) (sum(a in ASSETS) Risk(y,a)*frac(a))^2)/NYEARS totalrisk is_free TotalCorr := sum(a1,a2 in ASSETS) Corr(a1,a2)*frac(a1)*frac(a2) ! Spend all the capital SpendAll:= sum(a in ASSETS) frac(a) = 1 ! setparam("xnlp_verbose", true) ! In this example we will use a local solver, since it can be time consuming to solve it to global optimality setparam("xprs_nlpsolver", 1) setparam("xnlp_solver", 0) ! Solver choice: Xpress NonLinear (SLP) ! Objective 1: Maximize a combination of "return - weighted risk" writeln("Objective 1:") forall(l in LAMBDA) do ObjDef:= totalreturn - l*totalrisk maximize(ObjDef) writeln(" lambda =", strfmt(l,4), ": Mean yield = ", totalreturn.sol, ", StdDev = ", sum(a in ASSETS) Sdev(a)*100.0*getsol(frac(a)), ", Obj = ", getobjval, ", Corr = ", TotalCorr.sol) write(" "*13) forall(a in ASSETS | frac(a).sol>0.001) write(" ", a, ":", strfmt(frac(a).sol,5,3), "%") writeln end-do ! Objective 2: Minimize total (co)variance with parameterized return target writeln("Objective 2:") ObjDef:= sum(a1, a2 in ASSETS) Var(a1,a2)*frac(a1)*frac(a2) FAC:=50 RRANGE:= ceil(min(a in ASSETS) FAC*Mean(a))..floor(max(a in ASSETS) FAC*Mean(a)) forall(r in RRANGE) do ReturnTarget:= totalreturn >= r/FAC minimize(ObjDef) if getprobstat=XPRS_OPT then writeln(" r = ", strfmt(r/FAC,4), ": Mean yield = ", totalreturn.sol, ", StdDev = ", sum(a in ASSETS) Sdev(a)*100.0*getsol(frac(a)), ", Variance = ", getobjval, ", Corr = ", TotalCorr.sol) write(" "*13) forall(a in ASSETS | frac(a).sol>0.001) write(" ", a, ":", strfmt(frac(a).sol,5,3), "%") writeln else writeln(" r = ", strfmt(r/FAC,4), ": Infeasible") end-if end-do end-model | |||||||||||||
© Copyright 2024 Fair Isaac Corporation. |