| |||||||||||||
Basic LP tasks: problem statement and solving; solution analysis Description Small, introductory problems to modeling with Python. Further explanation of this example: 'Xpress Python Reference Manual'
Source Files By clicking on a file name, a preview is opened at the bottom of this page.
chess.py '''******************************************************* * Python Example Problems * * * * file chess.py * * Example for the use of the Python language * * (Small LP-problem) * * * * (c) 2018-2024 Fair Isaac Corporation * *******************************************************''' from __future__ import print_function import xpress as xp p = xp.problem() small = p.addVariable() large = p.addVariable() # Now we have the constraints p.addConstraint(3*small + 2*large <= 400) # limit on available machine time p.addConstraint(small + 3*large <= 200) # limit on available wood # Define the objective function p.setObjective(5*small + 20*large, sense=xp.maximize) p.optimize() print('') print("Here are the LP results") print("Objective value is ", p.getObjVal()) print("Make ", p.getSolution(small), " small sets, and ", p.getSolution(large), " large sets") p.chgcoltype([small, large], ['I', 'I']) p.optimize() print('') print("Here are the IP results") print("Objective value is ", p.getObjVal()) print("Make ", p.getSolution(small), " small sets, and ", p.getSolution(large), " large sets") | |||||||||||||
© Copyright 2024 Fair Isaac Corporation. |