 FICO Xpress Optimization Examples Repository
 FICO Optimization Community FICO Xpress Optimization Home   Modeling a piecewise linear objective function using SOS2 constraints

Description

We model a piecewise linear function with an SOS2 constraint

Further explanation of this example: This is an introductory example about Special Ordered Sets of type 2 (SOS2)

Source Files
By clicking on a file name, a preview is opened at the bottom of this page.

approx.R

#####################################
# This file is part of the          #
# Xpress-R interface examples       #
#                                   #
#   (c) 2021 Fair Isaac Corporation #
#####################################
#' ---
#' title: "Approx"
#' author: Y. Gu
#' date: Jul.2021
#' ---
#'
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(echo = TRUE) knitr::opts_chunk$set(results = "hold")
knitr::opts_chunk$set(warning = FALSE, message = FALSE) #' #' #' ## Brief Introduction To The Problem #' #' [This is an introductory example about Special Ordered Sets of type 2 (SOS2)](https://www.fico.com/fico-xpress-optimization/docs/latest/examples/mosel/ApplBook/Intro/approx.mos). #' SOS2 can be used for modeling piecewise approximations of functions of #' a single variable. #' #' In this example, we want to express$f$as a function of$x$and minimize$f$. #' There are 4 line segments and 5 break points ($R_i$,$F_i$), and 5 weight variables #'$y_i$associated with each break point. We express$x$as the sum of$R_i*y_i$and #'$f$as the sum of$F_i*y_i$, for i from 1 to 5. SOS2 requires that at most two adjacent #'$y_i$can be nonzero, and this means that we are always on the piecewise linear function. #' The convexity constraint requires that the sum of all$y_i$should be 1. To add an SOS2 #' restriction, we can use the function addsets. #' #' An alternative way to formulate SOS2 restriction is to use binary variables. We set #' 4 binary variables$b_i$associated with each of the 4 intervals, where$b_i$is 1 if #' the value of x lies between$R_i$and$R_(i+1)$. So, one necessary constraint is that #' exactly one of the$b_i$can be 1, i.e., the sum of$b_i$should be 1. For a full #' mathematical formulation of SOS2 using binary variables and graphical illustrations, #' please refer to section 3.4.5 of the book 'Applications of optimization with Xpress'. #' #' #' For this example, we need the package 'xpress'. #' ## ----Load The Package--------------------------------------------------------- library(xpress) #' #' #' Create a new empty problem and give the problem a suitable name. #' ## ----Create The Problem------------------------------------------------------- # create a new problem prob <- createprob() # set the problem name setprobname(prob, "Approx") #' #' #' Add the values we need for this example. #' ## ----Data--------------------------------------------------------------------- # coordinates of break points breaks.df <- data.frame( BREAK = 1:5, R = c(1, 2.2, 3.4, 4.8, 6.5), F = c(2, 3.2, 1.4, 2.5, 0.8) ) #' #' #' Create weight variables, variable$x$and variable$f$as mentioned in the introduction. #' ## ----Add Columns-------------------------------------------------------------- # create a vector 'y' in 'breaks.df' to store the column indices of weight variables breaks.df$y <-
apply(breaks.df, 1, function(x)
xprs_newcol(
prob,
lb = 0,
ub = Inf,
coltype = "C",
name = paste0("y_", x["BREAK"]),
objcoef = NULL
))

var.x <-
xprs_newcol(
prob,
lb = breaks.df$R, ub = breaks.df$R[nrow(breaks.df)],
coltype = "C",
name = "x",
objcoef = NULL
)

var.f <-
xprs_newcol(
prob,
lb = 0,
ub = Inf,
coltype = "C",
name = "f",
objcoef = 1
)

#'
#'
#' Three constraints are required, the first one is that all $y_i$ should sum up to 1.
#' The other two respectively represent the relationship between $x$ and $y_i$, and $f$
#' and $y_i$.
#'
# 1. convexity row
prob,
colind = breaks.df$y, rowcoef = rep(1, nrow(breaks.df)), rowtype = "E", rhs = 1, name = "convexity") # 2. reference row xprs_addrow( prob, colind = c(var.x, breaks.df$y),
rowcoef = c(1, -breaks.df$R), rowtype = "E", rhs = 0, name = "x-row" ) # 3. relationship between f and y xprs_addrow( prob, colind = c(var.f, breaks.df$y),
rowcoef = c(1, -breaks.df$F), rowtype = "E", rhs = 0, name = "f-row" ) #' #' #' We can add the SOS2 restriction by function addsets, or the SOS2 restriction can be #' formulated using binary variables. #' ## ----Add SOS2 Restriction, results='hide'------------------------------------- # add SOS2 restriction using function addset addsets( prob, settype = '2', start = 0, colind = breaks.df$y,
refval = breaks.df\$R
)

#'
#'
#' Now we can solve the problem.
#'
## ----Solve The Problem--------------------------------------------------------
setoutput(prob)
summary(xprs_optimize(prob))

#'
#'
#' Display the solutions here. Although all variables are continuous, the presence of a
#' set (SOS2) constraint requires the branch-and-bound or "MIP" algorithm of the optimizer.
#' Accordingly, we have to query the MIP objective value.
#'
## ----The Solutions------------------------------------------------------------
solution <- xprs_getsolution(prob)

# Note that the index vectors are 0-based, so we need to add 1 when requiring the
# solution value of x
print(paste0(
"The optimum value is: ",
getdblattrib(prob, xpress:::MIPOBJVAL),
", and the value of x is : ",
solution[var.x + 1]
))

#'
#'   