| |||||||||||||
Optimal number and distribution of grid points for a nonlinear function Description This model computes the optimal number and distribution of grid points
for a nonlinear function in one variable (optgrid.mos: sine function over one period, optgrid2.mos: choice among several functions). Optionally, the result is displayed via GNUplot. Further explanation of this example: This model is discussed in Section 14.2.3 of the book 'J. Kallrath: Business Optimization Using Mathematical Programming - An Introduction with Case Studies and Solutions in Various Algebraic Modeling Languages' (2nd edition, Springer, Cham, 2021, DOI 10.1007/978-3-030-73237-0).
Source Files By clicking on a file name, a preview is opened at the bottom of this page.
optgrid.mos (!********************************************************************* Mosel Example Problems ====================== file optgrid.mos ```````````````` Computes the optimal number and distribution of grid points for a nonlinear function (sine) Example discussed in section 14.2.3 of J. Kallrath: Business Optimization Using Mathematical Programming - An Introduction with Case Studies and Solutions in Various Algebraic Modeling Languages. 2nd edition, Springer Nature, Cham, 2021 Mosel version of optGrid.gms (J. Kallrath, 2011) -- The program computes the optimal number and distribution of grid points for nonlinear functions. It allows to consider shift variables at the breakpoints. The implementation discretizes the continuum constraints by gridpoints for which we know that they are between certain breakpoints. -- Optional graphical output via Gnuplot author: S. Heipcke, June 2020, rev. Nov. 2021 (c) Copyright 2020 Fair Isaac Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *********************************************************************!) model "optgrid" uses "math", "mmxnlp" parameters ALG="AP" ! AP - approximation, UE - uderestimator, OE - overestimator DISPLAY="TERM" ! TERM - terminal, PDF - generate PDF, PNG - generate PNG NB=4 ! Number of breakpoints (not counting b0) end-parameters !********************************************************************** ! Declaration of bounds (adapted to the function to be approximated) declarations LB, UB: real ! Lower and upper border of interval for x end-declarations LB:=0; UB:=M_PI !********************************************************************** declarations ! **** Breakpoint system NP = 200 BPLOT = 0..NP ! Set of break points for graph drawing BSTATIC = 0..NB ! Set of break points BARG: array(BSTATIC) of real ! X-value at breakpoint BFUN: array(BSTATIC) of real ! Y-value at breakpoint ! **** Constants NCeps = 0.00125 ! Numerical constant avoiding division by zero NCdelta = 0.05 ! Approximation bound MaxDev: real ! Maximal deviation obtained end-declarations ! **** Direct computation of breakpoints (discretized version) **** declarations GCMAX=20 ! Number of discretization points in a break point interval IMAX=GCMAX*NB ! Total number of discretization points BPTS=1..IMAX ! Set of discretization breakpoints GC=1..GCMAX ! Grid point counter in breakpoint interval s: array(BSTATIC) of mpvar ! Shift value at breakpoint sSol: array(BSTATIC) of real ! Solution values xBD: array(BPTS) of mpvar ! Argument at grid discretization point xB: array(BSTATIC) of mpvar ! Argument of breakpoint xBsol: array(BSTATIC) of real ! Solution values y: mpvar ! Objective func. variable (maximal deviation) sL: array(BSTATIC) of mpvar ! Slope at interval b lD: array(BSTATIC,BPTS) of mpvar ! Approximator value for x(i) if it were in interval b lA: array(BPTS) of mpvar ! Linear approximation value for x(i) Delta: array(BSTATIC,BPTS) of integer ! Known relationship between breakpoints and grid end-declarations GCsz:=GC.size forall(i in BSTATIC,i2 in BPTS,i3 in GC | i>BSTATIC.first) if i2 = i3 + GCsz*(i-1) then Delta(i,i2):= 1 end-if ! writeln(Delta) ! Constraints declarations Dev: array(BPTS) of nlctr ! Compute deviation at grid point b DevBP1: array(BSTATIC) of linctr ! Compute deviation at the break points DevBP2: array(BSTATIC) of linctr ! Compute deviation at the break points CxBD: array(BPTS) of linctr ! Compute value of the grid point variable SepBP: array(BSTATIC) of linctr ! Keep breakpoints apart (to avoid division by zero) Cslope: array(BSTATIC) of nlctr ! Compute the approximator slope for interval b Capprox: array(BSTATIC,BPTS) of nlctr ! Compute approximator value at discretization points Select: array(BPTS) of linctr ! Select one breakpoint interval LinApprox: array(BPTS) of linctr ! Select the linear approximation value end-declarations ! Deviation (normalized to NCdelta for better scaling) at the discretization points forall(i in BPTS) Dev(i):= abs( lA(i) - sin(xBD(i)) ) <= y ! Deviations in the breakpoints if shift variables are allowed forall(i in BSTATIC) do DevBP1(i):= s(i) <= y DevBP2(i):= -s(i) <= y end-do ! Relate x(i) to a breakpoint interval forall(i in BPTS) CxBD(i):= xBD(i) = sum(i2 in BSTATIC,i3 in GC | Delta(i2,i)=1 and i2>=1 and i = i3 +GCsz*(i2-1)) (xB(i2-1) + ( xB(i2) - xB(i2-1) ) / (GCsz+1) * i3) ! Keep breakpoints apart (to avoid division by zero) forall(i in BSTATIC | i>BSTATIC.first) SepBP(i):= xB(i) >= xB(i-1) + NCeps ! Compute the slope for interval b forall(i in BSTATIC | i>BSTATIC.first) Cslope(i):= ( xB(i) - xB(i-1) ) * sL(i) = ( sin(xB(i)) + s(i) ) - ( sin(xB(i-1)) + s(i-1) ) ! Compute approximator value at discretization points forall(i in BSTATIC,i2 in BPTS | Delta(i,i2)=1) Capprox(i,i2):= lD(i,i2) = ( sin(xB(i-1)) + s(i-1) ) + sL(i) * ( xBD(i2) - xB(i-1) ) ! Select one breakpoint interval for discretization point i - not needed ! forall(i in BPTS) ! Select(i):= sum(i2 in BSTATIC|i2>BSTATIC.first) Delta(i2,i) = 1 ! Select the linear approximation value forall(i in BPTS) LinApprox(i):= lA(i) = sum(i2 in BSTATIC | Delta(i2,i)=1) lD(i2,i)*Delta(i2,i) ! Bounds on shift values forall(i in BSTATIC) do s(i) >= - NCdelta ; s(i) <= + NCdelta end-do ! Bounds on the breakpoints forall(i in BSTATIC | i>BSTATIC.first) do xB(i) >= LB + NCeps ; xB(i) <= UB end-do ! Initialize the breakpoints to avoid division by zero xB(0) = LB ct:=0 forall(ct as counter, i in BSTATIC | i>BSTATIC.first) xB(i) >= LB + (UB-LB)/NB * ct xB(BSTATIC.last) = UB forall(i in BPTS) xBD(i) >= LB + NCeps forall(i in BPTS) xBD(i) <= UB ! Unbounded variables forall(i in BSTATIC) sL(i) is_free forall(i in BSTATIC,i2 in BPTS) lD(i,i2) is_free forall(i in BPTS) lA(i) is_free ! Solve the NLP problem setparam("XNLP_verbose", true) minimize(y) ! Get the maximal deviation (scale back) MaxDev := y.sol forall(i in BSTATIC) xBsol(i):=xB(i).sol forall(i in BSTATIC) sSol(i):=s(i).sol ! **** Derive upper bound (lower bound is MaxDev) **** ! **** Nonlinear optimization problem **** declarations X0: real ! Left point X1: real ! Right point F0: real ! Function value at X0 F1: real ! Function value at X1 S0: real ! Shift at X0 S1: real ! Shift at X1 SLOPE: real ! Slope of the secant UBD: real ! Upper bound on deviation delta yC: mpvar ! Global problem objective function variable x: mpvar ! Variable OptGrid: mpproblem end-declarations with OptGrid do ! Set bound UBD:= -1 ; ! Check each interval [xi, xi+1] forall(i in BSTATIC | i>BSTATIC.first) do ! Store bounds X0:= xBsol(i-1); X1:= xBsol(i) ! Assign shift variables S0:= s(i-1).sol; S1:= s(i).sol ! Evaluate function F0:= sin(X0); F1:= sin(X1) ! Calculate the slope SLOPE:= ( (F1+S1) - (F0+S0) ) / (X1 - X0) ! Reset bounds XLbd:= x >= X0 XUbd:= x <= X1 case ALG of ! Objective function: deviation between approximator and function "AP": DefObjA:= yC = abs(sin(x) - ( (F0+S0) + SLOPE * (x - X0) )) ! Objective function difference for underestimator "UE": DiffU:= yC = sin(x) - (( (F0+S0) + SLOPE * (x - X0) )) ! Objective function difference for overestimator "OE": DiffO:= yC = ( (F0+S0) + SLOPE * (x - X0) ) - sin(x) end-case if ALG="AP" then ! Compute the maximal deviation for fixed S0 and S1 maximize(yC) ! Check if bound needs to be updated if yC.sol > UBD then UBD := yC.sol end-if else ! First check feasibility of under- or overestimator if UB<>INFINITY then minimize(yC) if yC.sol < -NCeps then UBD := INFINITY ! under- or overestimator is NOT feasible else ! Compute the maximal deviation for fixed S0 and S1 maximize(yC) ! Check if bound needs to be updated if yC.sol > UBD then UBD := yC.sol end-if end-if end-if end-if end-do end-do !**** Adjust values for under- and overestimators case ALG of "AP": forall(i in BSTATIC) BFUN(i) := sin(xB(i).sol)+s(i).sol "UE": do forall(i in BSTATIC) BFUN(i) := sin(xB(i).sol)+s(i).sol-MaxDev UBD:= 2*UBD end-do "OE": do forall(i in BSTATIC) BFUN(i) := sin(xB(i).sol)+s(i).sol+MaxDev UBD:= 2*UBD end-do end-case writeln("Solution: ", MaxDev, " ", UBD) writeln(BFUN) forall(i in BSTATIC) writeln(i, " s:", s(i).sol, " x:", xB(i).sol) !******** Output as Gnuplot graphic ******** ! Generate temporary output data files pp:=getparam("tmpdir")+'/optgrid_1.txt' fopen(pp, F_OUTPUT) forall(i in BPLOT) writeln(LB+(UB-LB)*i/NP, " ", sin(LB+(UB-LB)*i/NP)) fclose(F_OUTPUT) pp2:=getparam("tmpdir")+'/optgrid_2.txt' fopen(pp2, F_OUTPUT) forall(i in BSTATIC) writeln(xB(i).sol, " ", sin(xB(i).sol)+s(i).sol) fclose(F_OUTPUT) ! Create Gnuplot graphic setparam("ioctrl", true) fopen("mmsystem.pipe:gnuplot -p",F_OUTPUT+F_LINBUF) if getparam("iostatus")<>0 then writeln("'gnuplot' command not found") exit(1) end-if case DISPLAY of "TERM": if getsysinfo(SYS_NAME)="Windows" then writeln("set terminal wxt") else writeln("set terminal x11") end-if "PNG": do writeln("set terminal png truecolor transparent size 800,600") writeln("set output 'optgrid.png'") end-do "PDF": do writeln("set terminal pdf color size 8,6") writeln("set output 'optgrid.pdf'") end-do end-case writeln('set grid') writeln("plot '"+pp+"' title 'sin' with lines lc rgb '#FF0000'," + "'"+pp2+"' title 'Approximation' with lines lc rgb '#0000BB'") if DISPLAY="TERM" then writeln("pause mouse keypress,close"); end-if fclose(F_OUTPUT) end-model | |||||||||||||
© Copyright 2024 Fair Isaac Corporation. |