| |||||||||||||||
| |||||||||||||||
|
Trafic equilibrium Description Determining a trafic equilibrium for a given network and travel volumes.
Source Files By clicking on a file name, a preview is opened at the bottom of this page.
Data Files trafequil.mos
(!*********************************************************************
Mosel NL examples
=================
file trafequil.mos
``````````````````
Convex NLP problem determining a trafic equilibrium
for a given network and travel volumes.
Based on AMPL model trafequil.mod
Source: http://www.orfe.princeton.edu/~rvdb/ampl/nlmodels/braess/
*** This model cannot be run with a Community Licence
for the provided data instance ***
(c) 2008 Fair Issac Corporation
author: S. Heipcke, Sep. 2008, rev. Jun. 2023
*********************************************************************!)
model "trafequil"
uses "mmxnlp"
parameters
DATAFILE = "trafequil.dat"
end-parameters
declarations
W: set of integer ! Set of OD-pairs
PP: range ! Set of all paths
A: range ! Set of arcs
P: array(W) of set of integer ! Set of paths connecting OD-pair w in W
D: array(W) of real ! Number of OD-travelers ('demand')
T0: array(A) of real ! Free-flow travel time
K: array(A) of real ! Practical capacity
AP: array(PP) of set of integer ! Arcs defining each path
G: array(A) of set of integer ! Set of paths that use each arc
end-declarations
initialisations from DATAFILE
P D
[K,T0] as "K_T0"
AP G
end-initialisations
finalise(W)
finalise(A)
finalise(PP)
declarations
h: array(PP) of mpvar ! Flow on path
end-declarations
forall(r in PP) h(r)>=0
! Arcflows
forall(a in A) f(a):= sum(r in G(a)) h(r)
(! Arctimes
forall(a in A) t(a):= T0(a)*(1 + 0.15*(f(a)/K(a))^4)
! Pathtimes
forall(r in PP) T(r):= sum(a in AP(r)) t(a)
!)
forall(a in A) B(a):= T0(a)*f(a) + (0.15/5*(T0(a)/K(a)^4)*(f(a)^5))
! Objective to be minimized
BeckmannObj:= sum(a in A) B(a)
forall(w in W)
TripTable(w):= sum(r in P(w)) h(r) = D(w)
! Since this is a convex problem, it is sufficient to call a local solver
setparam("xprs_nlpsolver", 1)
setparam("XNLP_verbose", true)
! Solving
minimise(BeckmannObj)
writeln("Solution: ", BeckmannObj.sol)
forall(a in A) writeln(a, ": ", f(a).sol, ", ", B(a).sol)
end-model
| |||||||||||||||
| © Copyright 2025 Fair Isaac Corporation. |