| |||||||||||||
Trafic equilibrium Description Determining a trafic equilibrium for a given network and travel volumes.
Source Files By clicking on a file name, a preview is opened at the bottom of this page.
Data Files trafequil.mos (!********************************************************************* Mosel NL examples ================= file trafequil.mos `````````````````` Convex NLP problem determining a trafic equilibrium for a given network and travel volumes. Based on AMPL model trafequil.mod Source: http://www.orfe.princeton.edu/~rvdb/ampl/nlmodels/braess/ *** This model cannot be run with a Community Licence for the provided data instance *** (c) 2008 Fair Issac Corporation author: S. Heipcke, Sep. 2008, rev. Jun. 2023 *********************************************************************!) model "trafequil" uses "mmxnlp" parameters DATAFILE = "trafequil.dat" end-parameters declarations W: set of integer ! Set of OD-pairs PP: range ! Set of all paths A: range ! Set of arcs P: array(W) of set of integer ! Set of paths connecting OD-pair w in W D: array(W) of real ! Number of OD-travelers ('demand') T0: array(A) of real ! Free-flow travel time K: array(A) of real ! Practical capacity AP: array(PP) of set of integer ! Arcs defining each path G: array(A) of set of integer ! Set of paths that use each arc end-declarations initialisations from DATAFILE P D [K,T0] as "K_T0" AP G end-initialisations finalise(W) finalise(A) finalise(PP) declarations h: array(PP) of mpvar ! Flow on path end-declarations forall(r in PP) h(r)>=0 ! Arcflows forall(a in A) f(a):= sum(r in G(a)) h(r) (! Arctimes forall(a in A) t(a):= T0(a)*(1 + 0.15*(f(a)/K(a))^4) ! Pathtimes forall(r in PP) T(r):= sum(a in AP(r)) t(a) !) forall(a in A) B(a):= T0(a)*f(a) + (0.15/5*(T0(a)/K(a)^4)*(f(a)^5)) ! Objective to be minimized BeckmannObj:= sum(a in A) B(a) forall(w in W) TripTable(w):= sum(r in P(w)) h(r) = D(w) ! Since this is a convex problem, it is sufficient to call a local solver setparam("xprs_nlpsolver", 1) setparam("XNLP_verbose", true) ! Solving minimise(BeckmannObj) writeln("Solution: ", BeckmannObj.sol) forall(a in A) writeln(a, ": ", f(a).sol, ", ", B(a).sol) end-model | |||||||||||||
© Copyright 2024 Fair Isaac Corporation. |