FICO Xpress Optimization Examples Repository
FICO Optimization Community FICO Xpress Optimization Home
Back to examples browserPrevious exampleNext example

Apply a primal heuristic to a knapsack problem


The program demonstrates the use of the global log callback.

We take the knapsack problem stored in burglar.mps and instigate a global search. At each node, so long as the current solution is both LP optimal and integer infeasible, we truncate the solution values to create a feasible integer solution. We then update the cutoff, if the new objective value has improved it, and continue the search.[download all files]

Source Files
By clicking on a file name, a preview is opened at the bottom of this page.

Data Files


Imports System
Imports Microsoft.VisualBasic
Imports System.IO
Imports Optimizer

Module Knapsack
    Const sLogFile As String = "knapsack.log"
    Const sProblem As String = "burglar"

    ' Global variables we'll use
    Private prob As XPRSprob
    Private x() As Double                   ' Nodal LP solution values
    Private gpObjCoef() As Double             ' Objective function coefficients
    Private gdIntTol As Double              ' Integer feasibility tolerance
    Private gnCol As Integer                ' Number of columns

    Public Sub RunKnapsack(ByVal Log As TextWriter)
        prob = Nothing
            ' Initialise optimizer

            prob = New XPRSprob

            ' Set the logfile

            ' Tell Optimizer to call HandleOptimizerMessage whenever a message is output
            prob.AddMessageCallback(New Optimizer.MessageCallback(AddressOf HandleOptimizerMessage), Log)

            ' Turn off presolve and disallow cuts - to slow solution and allow the effect
            ' of the heuristic to be seen
            prob.Presolve = 0
            prob.CutStrategy = 0

            ' Reads the problem file
            prob.ReadProb(frmMain.sDataDirPath & "/" & sProblem, "")

            ' Prepare to apply the heuristic

            ' Get the number of columns
            Dim gnCol As Integer
            gnCol = prob.Cols

            ' Allocate memory to the coefficient and solution arrays
            ReDim gpObjCoef(gnCol)
            ReDim x(gnCol)

            ' Get integer feasibility tolerance
            Dim gdIntTol As Double
            gdIntTol = prob.MIPTol

            ' Tell the optimizer to print global information to the log file at each node
            prob.MIPLog = 3

            ' Tell the optimizer to call truncsol at each node and apply the heuristic
            prob.AddGloballogCallback(New Optimizer.GloballogCallback(AddressOf TruncSol), Log)

            ' Perform the global search - in the course of which the heuristic will be
            ' applied
            Log.WriteLine("Applying a primal heuristic to problem {0}", sProblem)

        Catch ex As Exception
            ' Destroy the problem and free the optimizer
            If (Not prob Is Nothing) Then
            End If
        End Try
    End Sub

    Private Sub HandleOptimizerMessage(ByVal prob As Optimizer.XPRSprob, ByVal data As Object, _
                                       ByVal message As String, ByVal len As Integer, _
                                       ByVal msglvl As Integer)
        If (Not message Is Nothing) Then
            Dim log As TextWriter
            log = data
        End If
    End Sub

    Public Function TruncSol(ByVal prob As Optimizer.XPRSprob, ByVal data As Object) As Integer
        Dim nNodeNum As Integer             ' Number of nodes solved
        Dim dObjVal As Double               ' Objective value
        Dim dCutoff As Double               ' Cutoff value
        Dim nLPStatus As LPStatus           ' LP solution stgatus
        Dim nIntInf As Integer              ' Number of integer infeasibilities
        Dim i As Integer                    ' Loop counter
        Dim dHeurObj As Double              ' Objective value after the solution values have been truncated

        Dim log As TextWriter
        log = data

        ' Get the current node number
        nNodeNum = prob.CurrentNode

        ' Get the objective value at the current node
        dObjVal = prob.LPObjVal

        ' Get the current cutoff value
        dCutoff = prob.MIPAbsCutoff

        ' Get LP solution status and the number of integer infeasibilities
        nLPStatus = prob.LPStatus
        nIntInf = prob.MIPInfeas

        ' Apply heuristic if nodal solution is LP optimal and integer infeasible
        If (nLPStatus = LPStatus.Optimal And nIntInf > 0) Then

            ' Get LP solution
            prob.GetSol(x, Nothing, Nothing, Nothing)

            ' Truncate each solution value = making allowance for the integer
            '  tolerance - and calculate the new "heuristic" objective value
            dHeurObj = 0
            For i = 0 To gnCol - 1
                dHeurObj = dHeurObj + gpObjCoef(i) * CInt(x(i) + gdIntTol)
            log.WriteLine("  Node {0}: Objective Value: ORIGINAL {1};  HEURISTIC {2}" & vbCrLf, _
                nNodeNum, dObjVal, dHeurObj)

            ' If the "heuristic" objective value is better, update the cutoff -
            '  we assume that all the object coefficients are integers
            If (dHeurObj > dCutoff) Then
                prob.MIPAbsCutoff = dHeurObj + 0.9999
                log.WriteLine("              ** Cutoff updated to {0} **" & vbCrLf, _
                    dHeurObj + 1.0)
            End If

            ' if the nodal solution is not LP optimal do not apply the heuristic
        ElseIf (nLPStatus <> LPStatus.Optimal) Then
            log.WriteLine("   Node {0}: LP solution not optimal, not applying heuristic", nNodeNum)
            log.WriteLine("           ({0})" & vbCrLf, nLPStatus)

            ' If the nodal solution is integer infeasible print the objective value
        ElseIf (nIntInf = 0) Then
            log.WriteLine("   Node {0}: Integer solution found: Objective Value {1}" & _
                          vbCrLf, nNodeNum, dObjVal)
        End If

        Return 0
    End Function

End Module

Back to examples browserPrevious exampleNext example