| |||||||||||||
Maximizing the area of a polygon using a 'map' userfunction Description Demonstrates how to solve a nonlinear problem in C# Further explanation of this example: 'Xpress NonLinear Reference Manual'
Source Files By clicking on a file name, a preview is opened at the bottom of this page.
PolygonMap.cs using System; using Optimizer; using System.Collections.Generic; namespace Examples { /// <summary> /// Code example that uses a user function of type "map". /// </summary> /// <remarks> /// <code> /// Xpress Optimizer Examples /// ========================= /// /// Maximize the area of polygon of N vertices and diameter of 1 /// The position of vertices is indicated as (rho,theta) coordinates /// where rho denotes the distance to the base point /// (vertex with number N) and theta the angle from the x-axis. /// /// (c) 2021-2024 Fair Isaac Corporation /// </code> /// /// Polygon example: maximise the area of an N sided polygon /// /// *** Demonstrating using a simple map (R->R) userfunction *** /// /// <code> /// Variables: /// /// rho : 0..N-1 ! Distance of vertex from the base point /// theta : 0..N-1 ! Angle from x-axis /// /// Objective: /// (sum (i in 1..N-2) (rho(i)*rho(i-1)*sin(theta(i)-theta(i-1)))) * 0.5 /// /// Constraints: /// Vertices in increasing degree order: /// theta(i) >= theta(i-1) +.0001 : i = 1..N-2 /// Boundary conditions: /// theta(N-1) <= Pi /// 0.1 <= rho(i) <= 1 : i = 0..N-2 /// Third side of all triangles <= 1 /// rho(i)^2 + rho(j)^2 - rho(i)*rho(j)*2*cos(theta(j)-theta(i)) <= 1 : i in 0..N-3, j in i..N-2 /// </code> /// </remarks> public class PolygonMap { /// <summary> /// User function that maps a double to a double. /// </summary> /// <remarks> /// This just forwards to <code>sin()</code>. /// </remarks> /// <param name="value">The point at which to evaluate.</param> /// <returns>The value of the function evaluated at <c>value</c>.</returns> private static double MySin(double value) { return Math.Sin(value); } /// <summary> /// User function that maps a double to a double. /// </summary> /// <remarks> /// This just forwards to <code>cos()</code>. /// </remarks> /// <param name="value">The point at which to evaluate.</param> /// <returns>The value of the function evaluated at <c>value</c>.</returns> private static double MyCos(double value) { return Math.Cos(value); } public static void Main(String[] args) { using (XPRSprob prob = new XPRSprob(null)) { // Number of sides of the Polygon int nSide = 5; // Theta int[] theta = prob.VarArray('C', nSide - 1, 0.0, Math.PI, i => "THETA" + (i + 1)); // Rho int[] rho = prob.VarArray('C', nSide - 1, 0.01, 1.0, i => "RHO" + (i + 1)); // Add the user functions XPRSprob.MapFunction sin = prob.NlpAddUserFunction("mySin", 0, MySin); XPRSprob.MapFunction cos = prob.NlpAddUserFunction("myCos", 0, MyCos); // Objective function. We build the objective function as // a formula in infix notation. See below for submitting a // formula as string. List<int> tok = new List<int>(); List<double> val = new List<double>(); for (int i = 1; i < nSide - 1; ++i) { if ( tok.Count > 0 ) { tok.Add(Constants.TOK_OP); val.Add(Constants.OP_PLUS); } tok.Add(Constants.TOK_COL); // RHO(i) val.Add(rho[i]); tok.Add(Constants.TOK_OP); // * val.Add(Constants.OP_MULTIPLY); tok.Add(Constants.TOK_COL); // RHO(i-1) val.Add(rho[i-1]); tok.Add(Constants.TOK_OP); // * val.Add(Constants.OP_MULTIPLY); tok.Add(Constants.TOK_FUN); // mySin val.Add(sin.GetId()); tok.Add(Constants.TOK_LB); // ( val.Add(Constants.TOK_LB); tok.Add(Constants.TOK_COL); // THETA(i) val.Add(theta[i]); tok.Add(Constants.TOK_OP); // - val.Add(Constants.OP_MINUS); tok.Add(Constants.TOK_COL); // THETA(i-1) val.Add(theta[i-1]); tok.Add(Constants.TOK_RB); // ) val.Add(Constants.TOK_RB); tok.Add(Constants.TOK_OP); // * val.Add(Constants.OP_MULTIPLY); tok.Add(Constants.TOK_CON); // 0.5 val.Add(0.5); } tok.Add(Constants.TOK_EOF); val.Add(0.0); // Since nonlinear objectives cannot be directly expressed in Xpress, we maximize a free // variable objx and constrain this variable to be equal to the nonlinear objective. int objx = prob.AddCol(1.0, XPRS.MINUSINFINITY, XPRS.PLUSINFINITY); int objeq = prob.AddRow(new int[]{objx}, new double[]{-1.0}, 'E', 0.0); prob.NlpChgFormula(objeq, 0, tok.ToArray(), val.ToArray()); prob.ChgObjSense(ObjSense.Maximize); // Vertices in increasing degree order for (int i = 0; i < nSide - 2; ++i) prob.AddRow(new int[]{ theta[i], theta[i+1] }, new double[]{ -1.0, 1.0 }, 'G', 0.001); // Third side of all triangles <= 1 for (int i = 1; i < nSide - 1; i++) { for (int j = i + 1; j < nSide; j++) { int row = prob.AddRow(new int[0], new double[0], 'L', 1.0); prob.NlpChgFormulaStr(row, String.Format("RHO{0:d} ^ 2 + RHO{1:d} ^ 2 - RHO{2:d} * RHO{3:d} * 2 * myCos ( THETA{4:d} - THETA{5:d} )", i, j, i, j, j, i)); } } //prob.writeProb("map.lp", "l"); int solvestatus = -1; int solstatus = -1; /* Solve the problem to local optimality */ prob.NLPSolver = Optimizer.Constants.NLPSOLVER_LOCAL; prob.Optimize("s", out solvestatus, out solstatus); System.Console.WriteLine("solvestatus: " + solvestatus); System.Console.WriteLine("solstatus: " + solstatus); System.Console.WriteLine("Solution value: " + prob.ObjVal); double[] x = new double[prob.Cols]; int status = -1; prob.GetSolution(out status, x, 0, x.Length - 1); for (int i = 0; i < rho.Length; ++i) System.Console.WriteLine("RHO" + (i+1) + " = " + x[rho[i]]); for (int i = 0; i < theta.Length; ++i) System.Console.WriteLine("THETA" + (i + 1) + " = " + x[theta[i]]); } } } } | |||||||||||||
© Copyright 2024 Fair Isaac Corporation. |