FICO
FICO Xpress Optimization Examples Repository
FICO Optimization Community FICO Xpress Optimization Home
Back to examples browserPrevious example

Zero placeholders

Description
Nonlinear example demonstrating local optimality and the role of placeholders

Further explanation of this example: 'Xpress NonLinear Reference Manual'

xnlp_zero_placeholder.zip[download all files]

Source Files





xnlp_zero_placeholder.mos

! XNLP example demonstrating local optimality and the role of placeholders
!
! This examples solves a simple, then a complex function with many
! local optimal solutions both with SLP and Knitro to demonstrate
! the role of placeholders and delta_z, which while allows SLP to
! make long steps in degenrate situations, also tends to drive it to
! solutions with a large vertex index.
!
! This example demonstrates a particular non-linear optimization concept as related
! to Xpress NonLinear.
! The version of the example is for Xpress 7.5.
!
!  (c) 2013 Fair Isaac Corporation
!       author: Zsolt Csizmadia
model mmxnlp_nlp_duals
uses "mmxnlp"; 

declarations
 x: mpvar
end-declarations

x is_free
-1 <= x
      x <= 1

!setparam("xnlp_verbose",1)

! Start solving using a second order method, startign from 0, 1, and -1
setparam("xnlp_solver",XNLP_SOLVER_KNITRO)
setinitval(x,0)
minimize(x^3)
Knitro_zero := getobjval
Knitro_zero_x := getsol(x)


setinitval(x,1)
minimize(x^3)
Knitro_one := getobjval
Knitro_one_x := getsol(x)

setinitval(x,-1)
minimize(x^3)
Knitro_mone := getobjval
Knitro_mone_x := getsol(x)

! Now solve using SLP
setparam("xnlp_solver",XNLP_SOLVER_XSLP)
setinitval(x,0)
minimize(x^3)
SLP_zero := getobjval
SLP_zero_x := getsol(x)

setinitval(x,1)
minimize(x^3)
SLP_one := getobjval
SLP_one_x := getsol(x)

setinitval(x,-1)
minimize(x^3)
SLP_mone := getobjval
SLP_mone_x := getsol(x)

! Summarize
writeln
writeln("Function: x^3")
writeln("Starting point:     -1            0            1   ");
writeln("---------------------------------------------------")
writeln("Knitro : ",strfmt(Knitro_mone,13), strfmt(Knitro_zero,13), 
        strfmt(Knitro_one,13));
writeln("SLP    : ",strfmt(SLP_mone,13), strfmt(SLP_zero,13), strfmt(SLP_one,13));
writeln("-- at x = ")
writeln("Knitro : ",strfmt(Knitro_mone_x,13), strfmt(Knitro_zero_x,13), 
        strfmt(Knitro_one_x,13));
writeln("SLP    : ",strfmt(SLP_mone_x,13), strfmt(SLP_zero_x,13), 
        strfmt(SLP_one_x,13));

objective := x*sin((10*x)^2);

! Start solving using a second order method, startign from 0, 1, and -1
setparam("xnlp_solver",XNLP_SOLVER_KNITRO)
setinitval(x,0)
minimize( objective )
F_Knitro_zero := getobjval
F_Knitro_zero_x := getsol(x)

setinitval(x,1)
minimize( objective )
F_Knitro_one := getobjval
F_Knitro_one_x := getsol(x)

setinitval(x,-1)
minimize( objective )
F_Knitro_mone := getobjval
F_Knitro_mone_x := getsol(x)

! Now solve using SLP
setparam("xnlp_solver",XNLP_SOLVER_XSLP)
setinitval(x,0)
minimize( objective )
F_SLP_zero := getobjval
F_SLP_zero_x := getsol(x)

setinitval(x,1)
minimize( objective )
F_SLP_one := getobjval
F_SLP_one_x := getsol(x)

setinitval(x,-1)
minimize( objective )
F_SLP_mone := getobjval
F_SLP_mone_x := getsol(x)

! Summarize
writeln
writeln("Function: x*sin((10*x)^2)")
writeln("Starting point:     -1            0            1   ");
writeln("---------------------------------------------------")
writeln("Knitro : ",strfmt(F_Knitro_mone,13), strfmt(F_Knitro_zero,13), 
        strfmt(F_Knitro_one,13));
writeln("SLP    : ",strfmt(F_SLP_mone,13), strfmt(F_SLP_zero,13),
        strfmt(F_SLP_one,13));
writeln("-- at x = ")
writeln("Knitro : ",strfmt(F_Knitro_mone_x,13), strfmt(F_Knitro_zero_x,13), 
        strfmt(F_Knitro_one_x,13));
writeln("SLP    : ",strfmt(F_SLP_mone_x,13), strfmt(F_SLP_zero_x,13), 
        strfmt(F_SLP_one_x,13));
end-model

end-model


Back to examples browserPrevious example