FICO
FICO Xpress Optimization Examples Repository
FICO Optimization Community FICO Xpress Optimization Home
Back to examples browserPrevious exampleNext example

Minimum surface between boundaries

Description
Minimizing the surface between given boundaries with an optional obstacle.


Source Files
By clicking on a file name, a preview is opened at the bottom of this page.
minsurf.mos[download]
minsurf_graph.mos[download]





minsurf.mos

(!*********************************************************************
   Mosel NL examples
   =================
   file minsurf.mos
   ````````````````
   Convex NLP problem minimizing the surface between given
   boundaries.
   Set parameter OBSTACLE to 'true' to add an additional fixed
   area in the center of the surface. 

   Based on AMPL model minsurf.mod
   Source: http://www.orfe.princeton.edu/~rvdb/ampl/nlmodels/minsurf/ 

   *** This model cannot be run with a Community Licence 
       for the provided data instance ***

   (c) 2008 Fair Issac Corporation
       author: S. Heipcke, Sep. 2008, rev. Jun. 2023
*********************************************************************!)

model "minsurf"
 uses "mmxnlp"

 parameters
  OBSTACLE=true
  N0 = 35                          ! Number of points within borders
 end-parameters
 
 declarations
  N = N0+1                         ! Border point index
  X = 0..N                         ! Range for x-values
  Y = 0..N                         ! Range for y-values
  HX = 2/N
  HY = 2/N
  GAMMA0,GAMMA2: array(X) of real  ! Border points parallel to x axis
  GAMMA1,GAMMA3: array(Y) of real  ! Broder points parallel to y axis
 end-declarations

 forall(x in X) GAMMA0(x):= 1.5*x*(N-x)/(N/2)^2
 forall(y in Y) GAMMA1(y):= 2*y*(N-y)/(N/2)^2
 forall(x in X) GAMMA2(x):= 4*x*(N-x)/(N/2)^2
 forall(y in Y) GAMMA3(y):= 2*y*(N-y)/(N/2)^2

(! Alternative border definition:
 forall(x in X) GAMMA0(x):= 2*(if (x <= N/2, x, N-x)/(N/2))
 forall(y in Y) GAMMA1(y):= 0*(if (y <= N/2, y, N-y)/(N/2))
 forall(x in X) GAMMA2(x):= 2*(if (x <= N/2, x, N-x)/(N/2))
 forall(y in Y) GAMMA3(y):= 0*(if (y <= N/2, y, N-y)/(N/2))
!)

 declarations
  z: array(X,Y) of mpvar            ! Surface height at grid points
 end-declarations

 forall(x in X,y in Y) z(x,y) is_free

! Objective function
 Area:= (HX*HY/2)*sum(x in X | x<N, y in Y | y<N) 
  ( sqrt(1 + ((z(x+1,y)-z(x,y))/HX)^2 + ((z(x,y+1)-z(x,y))/HX)^2) +
    sqrt(1 + ((z(x+1,y+1)-z(x,y+1))/HX)^2 + ((z(x+1,y+1)-z(x+1,y))/HX)^2) )

! Fix the boundaries
 forall(x in X) z(x,0) = GAMMA0(x)
 forall(y in Y) z(N,y) = GAMMA1(y)
 forall(x in X) z(x,N) = GAMMA2(x)
 forall(y in Y) z(0,y) = GAMMA3(y)

! Add an obstacle in the center of the area
 if OBSTACLE then
  forall(x,y in ceil(N*0.4)..ceil(N*0.6)) z(x,y) = GAMMA2(ceil(N/2))
 end-if
 
! Since this is a convex problem, it is sufficient to call a local solver
 setparam("xprs_nlpsolver", 1)

 setparam("XNLP_verbose", true)
 minimise(Area)
 
 writeln("Solution: ", Area.sol)

 forall(x in X, y in Y) writeln(x, " ", y, " ", z(x,y).sol)

end-model

Back to examples browserPrevious exampleNext example