FICO
FICO Xpress Optimization Examples Repository
FICO Optimization Community FICO Xpress Optimization Home
Back to examples browser

Python files for the Mosel-Python comparison blog

Description

Python files for the blog post comparing Mosel and Python: 4 Main Takeaways from Comparing Xpress Mosel and Python for Optimization Models.

Instructions for running these files:
  1. Extract the data files into the same directory as the Python files.
  2. To run a single file via the command line, call Python and pass the filename followed by the first 2 digits of the data file. For example: python SparseGrouping_std.py 00

pythonblog.zip[download all files]

Source Files

Data Files





QuantityDiscount_adv.py

'''********************************************************
  * Python Example Problems                               *
  *                                                       *
  * file QuantityDiscount_adv.py                          *
  * Improved version of model 'QuantityDiscount_std.py'   *
  * -- Multiple cases within a loop --                    *
  *                                                       *
  * (c) 2019-2025 Fair Isaac Corporation                  *
  ******************************************************'''
#S:IMPORT
import pandas as pd
import numpy as np
import sys

if len(sys.argv) > 1:
    DATA_FILE_PREFIX = sys.argv[1]
else:
    DATA_FILE_PREFIX = "00"
print("#E:IMPORT")

print("#S:READ")
V = pd.read_csv(DATA_FILE_PREFIX + '_H_QuantityDiscount_V.csv', index_col = ['P']).squeeze()
print("#E:READ")

print("#S:PROC")
a = np.array([0, 1, 5, 50])
v = np.array([1.50, 1.45, 1.30, 1.25, 1.20])

W = pd.Series(data = v[np.searchsorted(a, V)], index = V.index, name = 'W')

S = W.dot(V)
print("#E:PROC")

print("#S:TEST")
print('{:.2f}'.format(S))
print("#E:TEST")

Back to examples browser