FICO
FICO Xpress Optimization Examples Repository
FICO Optimization Community FICO Xpress Optimization Home
Back to examples browser

Python files for the Mosel-Python comparison blog

Description

Python files for the blog post comparing Mosel and Python: 4 Main Takeaways from Comparing Xpress Mosel and Python for Optimization Models.

Instructions for running these files:
  1. Extract the data files into the same directory as the Python files.
  2. To run a single file via the command line, call Python and pass the filename followed by the first 2 digits of the data file. For example: python SparseGrouping_std.py 00

pythonblog.zip[download all files]

Source Files

Data Files





MatrixVariables_adv.py

'''********************************************************
  * Python Example Problems                               *
  *                                                       *
  * file MatrixVariables_adv.py                           *
  * Improved version of model 'MatrixVariables_std.py'    *
  * -- Defining constraints over a 2-dimensional array    *
  * of variables --                                       *
  *                                                       *
  * (c) 2019-2025 Fair Isaac Corporation                  *
  ******************************************************'''
#S:IMPORT
import pandas as pd
import numpy as np
import xpress as xp
import sys

if len(sys.argv) > 1:
    DATA_FILE_PREFIX = sys.argv[1]
else:
    DATA_FILE_PREFIX = "00"
print("#E:IMPORT")

print("#S:READ")
S = pd.read_csv(DATA_FILE_PREFIX + '_H_MatrixVariables_S.csv', index_col = ['T']).squeeze().values
V = pd.read_csv(DATA_FILE_PREFIX + '_H_MatrixVariables_V.csv', index_col = ['P']).squeeze().values
print("#E:READ")

print("#S:PROC")
nT = len(S)
nP = len(V)

p = xp.problem()

Q = p.addVariables(nT, nP)

p.addConstraint(xp.Dot(Q, V) <= S)
print("#E:PROC")

Back to examples browser