![]() | |||||||||||
| |||||||||||
Python files for the Mosel-Python comparison blog Description Python files for the blog post comparing Mosel and Python: 4 Main Takeaways from Comparing Xpress Mosel and Python for Optimization Models. Instructions for running these files:
Source Files By clicking on a file name, a preview is opened at the bottom of this page. Data Files SparseGrouping_adv.py '''******************************************************** * Python Example Problems * * * * file SparseGrouping_adv.py * * Improved version of model 'SparseGrouping_std.py' * * -- Multiple cases within a loop over a sparse * * array -- * * * * (c) 2019-2025 Fair Isaac Corporation * ******************************************************''' #S:IMPORT import pandas as pd import numpy as np import sys if len(sys.argv) > 1: DATA_FILE_PREFIX = sys.argv[1] else: DATA_FILE_PREFIX = "00" print("#E:IMPORT") print("#S:READ") C = pd.read_csv(DATA_FILE_PREFIX + '_H_SparseGrouping_C.csv', index_col = ['i', 'j', 'k', 'l']).squeeze() print("#E:READ") print("#S:PROC") a = np.array([100, 1000]) - 1 v = np.array([1, 2, 3]) G = pd.Series(data = v[np.searchsorted(a, C)], index = C.index, name = 'G') print("#E:PROC") print("#S:TEST") for ((i, j, k, l), v) in G.items(): print('{} {} {} {} {}'.format(i, j, k, l, v)) print("#E:TEST") # Pietro suggestion
| |||||||||||
© Copyright 2025 Fair Isaac Corporation. |