![]() | |||||||||||
| |||||||||||
Python files for the Mosel-Python comparison blog Description Python files for the blog post comparing Mosel and Python: 4 Main Takeaways from Comparing Xpress Mosel and Python for Optimization Models. Instructions for running these files:
Source Files By clicking on a file name, a preview is opened at the bottom of this page. Data Files SparseVariables_adv.py '''******************************************************** * Python Example Problems * * * * file SparseVariables_adv.py * * Improved version of model 'SparseVariables_std.py' * * -- Enumeration of sparse multidimensional arrays -- * * * * (c) 2019-2025 Fair Isaac Corporation * ******************************************************''' #S:IMPORT import pandas as pd import xpress as xp import sys if len(sys.argv) > 1: DATA_FILE_PREFIX = sys.argv[1] else: DATA_FILE_PREFIX = "00" print("#E:IMPORT") print("#S:READ") C = pd.read_csv(DATA_FILE_PREFIX + '_H_SparseVariables_C.csv', index_col = ['i', 'j', 'k', 'l']).squeeze() print("#E:READ") print("#S:PROC") p = xp.problem() f = pd.Series( data = [ p.addVariable() for _ in range(C.shape[0]) ], name = 'f', index = C.index) print("#E:PROC") print("#S:TEST") for (i, j, k, l) in C.index.values: print('{} {} {} {}'.format(i, j, k, l)) print("#E:TEST")
| |||||||||||
© Copyright 2025 Fair Isaac Corporation. |