| |||||||||||
Irreducible Infeasible Set Search Description Anlaysing an infeasible problem by identifying an irreducible infeasible subset (IIS)
Source Files By clicking on a file name, a preview is opened at the bottom of this page.
Data Files infeas.lp \Problem name: infeas Minimize 0 Subject To c1: 48 x15 - 24 x17 + 12 x19 - 12 x30 - 12 x31 + 6 x33 + 8 x49 - 4 x51 + 2 x53 >= 0 c2: - 54 x16 + 18 x17 + 36 x18 - 18 x19 + 6 x20 + 54 x24 - 18 x25 - 54 x26 + 27 x27 - 9 x28 + 9 x32 - 3 x33 - 9 x50 + 3 x51 + 6 x52 - 3 x53 + x54 >= 0 c3: - 60 x14 + 48 x15 - 6 x17 + 18 x19 - 12 x20 + 60 x22 - 60 x23 + 12 x25 - 30 x27 + 18 x28 + 12 x30 - 6 x31 - 10 x48 + 8 x49 - x51 + 3 x53 - 2 x54 >= 0 c4: - 6 x13 + 3 x22 - 3 x23 + 3 x24 - 3 x26 + 3 x29 - x47 >= 0 c5: 24 x13 + 6 x14 - 6 x15 + 6 x16 - 6 x18 - 18 x22 + 18 x23 - 18 x24 + 18 x26 - 12 x29 + 4 x47 + x48 - x49 + x50 - x52 >= 0 c6: 30 x6 - 20 x7 - 30 x9 + 30 x10 - 5 x12 + 9 x19 - 6 x20 - 15 x27 + 10 x28 + 6 x30 - 6 x31 + x33 + 15 x40 - 10 x41 - 6 x43 + 6 x44 - x46 >= 0 c7: - 40 x5 - 20 x6 + 20 x7 + 40 x9 - 40 x10 + 20 x11 - 8 x18 - 4 x19 + 4 x20 + 20 x26 + 10 x27 - 10 x28 - 12 x30 + 12 x31 - 6 x32 - 8 x39 - 4 x40 + 4 x41 + 4 x43 - 4 x44 + 2 x45 >= 0 c8: 1000 x5 - 10 x6 - 490 x9 + 490 x10 - 500 x11 + 5 x12 + 300 x18 - 3 x19 - 500 x26 + 5 x27 + 98 x30 - 98 x31 + 100 x32 - x33 + 500 x39 - 5 x40 - 98 x43 + 98 x44 - 100 x45 + x46 >= 0 c9: - 2000 x5 + 20 x6 + 980 x9 - 980 x10 + 1000 x11 - 10 x12 - 400 x18 + 4 x19 + 1000 x26 - 10 x27 - 294 x30 + 294 x31 - 300 x32 + 3 x33 - 400 x39 + 4 x40 + 98 x43 - 98 x44 + 100 x45 - x46 >= 0 c10: 1980 x5 + 10 x6 - 10 x7 - 1000 x9 + 1000 x10 - 990 x11 + 594 x18 + 3 x19 - 3 x20 - 990 x26 - 5 x27 + 5 x28 + 200 x30 - 200 x31 + 198 x32 + 990 x39 + 5 x40 - 5 x41 - 200 x43 + 200 x44 - 198 x45 >= 0 c11: - 30 x5 + 15 x6 - 5 x7 + 15 x11 - 5 x12 - 27 x16 + 9 x17 + 12 x18 - 6 x19 + 2 x20 + 27 x24 - 9 x25 - 12 x26 + 6 x27 - 2 x28 - 45 x37 + 15 x38 + 30 x39 - 15 x40 + 5 x41 - 3 x45 + x46 + 9 x50 - 3 x51 - 6 x52 + 3 x53 - x54 >= 0 c12: - 90 x5 + 45 x6 - 15 x7 + 45 x11 - 15 x12 - 27 x16 + 9 x17 + 27 x24 - 9 x25 + 18 x26 - 9 x27 + 3 x28 - 9 x32 + 3 x33 - 15 x37 + 5 x38 - 6 x39 + 3 x40 - x41 + 3 x45 - x46 >= 0 c13: - 16 x2 + 8 x4 - 8 x6 + 8 x9 - 8 x14 + 8 x22 - 6 x35 >= 0 c14: - 28 x2 + 14 x4 - 24 x6 + 10 x7 + 24 x9 - 10 x10 - 36 x14 + 22 x15 - 2 x17 + 6 x19 - 4 x20 + 36 x22 - 22 x23 + 2 x25 - 6 x27 + 4 x28 - 56 x35 + 42 x36 - 6 x38 + 16 x40 - 10 x41 - 4 x43 + 2 x44 + 10 x48 - 8 x49 + x51 - 3 x53 + 2 x54 >= 0 c15: - 198 x52 - x53 + x54 >= 0 c16: - 3 x44 + x46 >= 0 c17: 9 x44 - 3 x46 - 6 x49 + 3 x51 - x54 >= 0 c18: 12 x43 - 6 x44 - 4 x49 + 2 x51 - 4 x53 + 2 x54 >= 0 c19: - 3 x42 + 2 x47 - x48 + x49 - x50 + x52 >= 0 c20: 15 x42 - 3 x43 - 10 x47 + 5 x48 - 3 x49 + 5 x50 - x51 - 5 x52 + x53 >= 0 c21: 15 x42 - 3 x43 + 3 x44 - 3 x45 - 10 x47 + 5 x48 - 5 x49 + 5 x50 - 3 x52 >= 0 c22: 12 x24 - 4 x25 - 6 x26 + 3 x27 - x28 >= 0 c23: - 36 x24 + 12 x25 + 18 x26 - 9 x27 + 3 x28 + 12 x39 - 6 x40 + 2 x41 - 6 x45 + 2 x46 + 12 x50 - 4 x51 - 6 x52 + 3 x53 - x54 >= 0 c24: 6 x24 - 2 x25 + 6 x26 - 3 x27 + x28 - 3 x32 + x33 >= 0 c25: - 18 x24 + 6 x25 - 18 x26 + 9 x27 - 3 x28 + 9 x32 - 3 x33 + 24 x39 - 12 x40 + 4 x41 - 12 x45 + 4 x46 + 6 x50 - 2 x51 >= 0 c26: 15 x23 - 3 x25 + 3 x28 - 3 x31 - 10 x36 + 5 x38 - 5 x41 + 5 x44 - 3 x49 >= 0 c27: 10 x23 - 4 x25 + x28 - 3 x31 + x33 >= 0 c28: 15 x22 - 10 x23 + x25 - 3 x27 + 2 x28 >= 0 c29: - 45 x22 + 30 x23 - 3 x25 + 9 x27 - 6 x28 + 10 x36 - 5 x38 + 9 x40 - 4 x41 - 9 x43 + 4 x44 + 15 x48 - 10 x49 + x51 - 3 x53 + 2 x54 >= 0 c30: 5 x22 + 10 x23 - 5 x25 + 2 x27 - 2 x30 - 2 x31 + x33 >= 0 c31: - 15 x22 - 30 x23 + 15 x25 - 6 x27 + 6 x30 + 6 x31 - 3 x33 + 30 x36 - 15 x38 + 9 x40 - 9 x43 - 6 x44 + 3 x46 + 5 x48 + 2 x49 - x51 >= 0 c32: - 7 x21 + x22 - x23 + x24 - x26 + x29 >= 0 c33: 21 x21 - 3 x22 + 3 x23 - 3 x24 + 3 x26 - 3 x29 - 14 x34 + 7 x35 - 7 x36 + 7 x37 - 7 x39 + 7 x42 - 5 x47 >= 0 c34: - 63 x21 + 18 x22 - 3 x23 + 9 x24 - 3 x25 + 42 x34 - 21 x35 + 11 x36 - 21 x37 + 5 x38 + 15 x39 - 3 x40 - 21 x42 + 6 x43 - x44 + 3 x45 - x46 + 21 x47 - 6 x48 + x49 - 3 x50 + x51 >= 0 c35: 21 x21 - 6 x22 + 6 x23 - 6 x24 + 3 x26 - 5 x29 + x30 - x31 + x32 >= 0 c36: 105 x21 - 45 x22 + 15 x23 - 39 x24 + 12 x25 + 12 x26 - 3 x27 - 30 x29 + 12 x30 - 3 x31 + 9 x32 - 3 x33 - 70 x34 + 35 x35 - 15 x36 + 35 x37 - 10 x38 - 17 x39 + 4 x40 + 35 x42 - 13 x43 + 3 x44 - 9 x45 + 3 x46 - 15 x47 + 5 x48 - x49 + 3 x50 - x51 >= 0 c37: 24 x15 - 12 x17 + 4 x20 - 6 x31 + 2 x33 >= 0 c38: 40 x13 - 20 x14 + 20 x15 - 20 x16 + 12 x18 - 10 x29 + 2 x30 - 2 x31 + 2 x32 >= 0 c39: 20 x13 - 10 x14 + 10 x15 - 10 x16 + 6 x18 + 10 x29 - 2 x30 + 2 x31 - 2 x32 - 10 x47 + 5 x48 - 5 x49 + 5 x50 - 3 x52 >= 0 c40: 1000 x9 - 1000 x10 + 990 x11 - 396 x18 - 2 x19 + 2 x20 + 200 x30 - 200 x31 + 198 x32 - 200 x43 + 200 x44 - 198 x45 >= 0 c41: - 2000 x9 + 2000 x10 - 1980 x11 + 1584 x18 + 8 x19 - 8 x20 - 200 x30 + 200 x31 - 198 x32 + 600 x43 - 600 x44 + 594 x45 - 396 x52 - 2 x53 + 2 x54 >= 0 c42: 20 x9 - 10 x10 - 4 x15 + 2 x17 - 4 x19 + 2 x20 + 4 x30 - 2 x31 - 4 x43 + 2 x44 >= 0 c43: - 40 x9 + 20 x10 + 16 x15 - 8 x17 + 16 x19 - 8 x20 - 4 x30 + 2 x31 + 12 x43 - 6 x44 - 4 x49 + 2 x51 - 4 x53 + 2 x54 >= 0 c44: - 2 x9 - 2 x10 + x12 >= 0 c45: - 20 x9 - 20 x10 + 10 x12 + 32 x15 - 16 x17 + 8 x19 - 2 x30 - 2 x31 + x33 + 6 x43 + 6 x44 - 3 x46 - 8 x49 + 4 x51 - 2 x53 >= 0 c46: - 5 x8 + x9 - x10 + x11 >= 0 c47: 105 x3 - 35 x4 - 90 x5 + 45 x6 - 15 x7 + 15 x11 - 5 x12 - 39 x16 + 13 x17 + 24 x18 - 12 x19 + 4 x20 + 12 x24 - 4 x25 - 6 x26 + 3 x27 - x28 - 30 x37 + 10 x38 + 24 x39 - 12 x40 + 4 x41 - 3 x45 + x46 + 9 x50 - 3 x51 - 6 x52 + 3 x53 - x54 >= 0 c48: - 6 x2 - x4 + x7 - x10 + x15 - x23 + x36 >= 0 c49: 36 x1 - 16 x2 + 8 x4 - 8 x6 + 8 x9 - 8 x14 + 5 x22 - 7 x35 + 2 x36 - x38 + x40 - x43 + x48 >= 0 c50: 126 x1 - 112 x2 + 21 x4 - 51 x6 + 30 x7 + 21 x9 - 10 x10 - 45 x14 + 34 x15 - 4 x17 + 12 x19 - 8 x20 + 15 x22 - 10 x23 + x25 - 3 x27 + 2 x28 - 35 x35 + 30 x36 - 5 x38 + 13 x40 - 8 x41 - 4 x43 + 2 x44 + 10 x48 - 8 x49 + x51 - 3 x53 + 2 x54 >= 0 c51: - x1 + x2 - x3 + x5 - x8 + x13 - x21 + x34 >= 8 c52: - 9 x1 + x2 - 3 x3 + x4 >= -45 c53: 9 x1 - 9 x2 + 9 x3 - 9 x5 + 9 x8 - 9 x13 + 6 x21 - 6 x34 - x35 + x36 - x37 + x39 - x42 + x47 >= -27 c54: - 36 x1 + 36 x2 - 36 x3 + 36 x5 - 26 x8 + 26 x13 + 4 x14 - 4 x15 + 4 x16 - 4 x18 - 14 x21 - x22 + x23 - x24 + x26 + 14 x34 + 7 x35 - 7 x36 + 7 x37 - 7 x39 + 4 x42 - 4 x47 - x48 + x49 - x50 + x52 >= 48 Bounds End | |||||||||||
© Copyright 2024 Fair Isaac Corporation. |