| |||||||||||||||||||
| |||||||||||||||||||
|
ELS - Solving several model instances in parallel Description This implementation (program: runelsd.* starting submodel:
elsd.mos) extends the parallel version of the ELS model to solving of submodels
distributed to various computing nodes, showing the following features:
Source Files By clicking on a file name, a preview is opened at the bottom of this page.
Data Files elsd.mos
(!*******************************************************
Mosel Example Problems
======================
file elsd.mos
`````````````
Economic lot sizing, ELS, problem
(Cut generation algorithm adding (l,S)-inequalities
in one or several rounds at the root node or in
tree nodes)
-- Distributed computing version --
*** Not intended to be run standalone - run from runelsd.* ***
ELS considers production planning over a horizon
of T periods. In period t, t=1,...,T, there is a
given demand DEMAND[p,t] that must be satisfied by
production produce[p,t] in period t and by inventory
carried over from previous periods. There is a
set-up up cost SETUPCOST[t] associated with
production in period t. The unit production cost
in period t is PRODCOST[p,t]. There is no inventory
or stock-holding cost.
(c) 2010 Fair Isaac Corporation
author: S. Heipcke, May 2010, rev. July 2023
*******************************************************!)
model Els
uses "mmxprs","mmsystem","mmjobs"
parameters
ALG = 0 ! Default algorithm: no user cuts
CUTDEPTH = 3 ! Maximum tree depth for cut generation
DATAFILE = "els4.dat"
T = 60
P = 4
RMT = "rmt:" ! Files are on root node
end-parameters
forward function cb_node: boolean
forward procedure tree_cut_gen
forward function cb_updatebnd: boolean
forward procedure cb_intsol
declarations
NEWSOL = 2 ! "New solution" event class
EPS = 1e-6 ! Zero tolerance
TIMES = 1..T ! Time periods
PRODUCTS = 1..P ! Set of products
DEMAND: array(PRODUCTS,TIMES) of integer ! Demand per period
SETUPCOST: array(TIMES) of integer ! Setup cost per period
PRODCOST: array(PRODUCTS,TIMES) of real ! Production cost per period
CAP: array(TIMES) of integer ! Production capacity per period
D: array(PRODUCTS,TIMES,TIMES) of integer ! Total demand in periods t1 - t2
produce: array(PRODUCTS,TIMES) of mpvar ! Production in period t
setup: array(PRODUCTS,TIMES) of mpvar ! Setup in period t
solprod: array(PRODUCTS,TIMES) of real ! Sol. values for var.s produce
solsetup: array(PRODUCTS,TIMES) of real ! Sol. values for var.s setup
starttime: real
Msg: Event ! An event
end-declarations
initializations from RMT+DATAFILE
DEMAND SETUPCOST PRODCOST CAP
end-initializations
forall(p in PRODUCTS,s,t in TIMES) D(p,s,t):= sum(k in s..t) DEMAND(p,k)
! Objective: minimize total cost
MinCost:= sum(t in TIMES) (SETUPCOST(t) * sum(p in PRODUCTS) setup(p,t) +
sum(p in PRODUCTS) PRODCOST(p,t) * produce(p,t) )
! Production in period t must not exceed the total demand for the
! remaining periods; if there is production during t then there
! is a setup in t
forall(p in PRODUCTS, t in TIMES)
ProdSetup(p,t):= produce(p,t) <= D(p,t,getlast(TIMES)) * setup(p,t)
! Production in periods 0 to t must satisfy the total demand
! during this period of time
forall(p in PRODUCTS,t in TIMES)
sum(s in 1..t) produce(p,s) >= sum (s in 1..t) DEMAND(p,s)
! Capacity limits
forall(t in TIMES) sum(p in PRODUCTS) produce(p,t) <= CAP(t)
! Variables setup are 0/1
forall(p in PRODUCTS, t in TIMES) setup(p,t) is_binary
setparam("zerotol", EPS/100) ! Set Mosel comparison tolerance
starttime:=gettime
setparam("XPRS_THREADS", 1) ! No parallel threads for optimization
! Uncomment to get detailed MIP output
! setparam("XPRS_VERBOSE", true)
setparam("XPRS_LPLOG", 0)
setparam("XPRS_MIPLOG", -1000)
writeln("**************ALG=",ALG,"***************")
SEVERALROUNDS:=false; TOPONLY:=false
case ALG of
1: do
setparam("XPRS_CUTSTRATEGY", 0) ! No cuts
setparam("XPRS_HEUREMPHASIS", 0) ! No heuristics
end-do
2: do
setparam("XPRS_CUTSTRATEGY", 0) ! No cuts
setparam("XPRS_HEUREMPHASIS", 0) ! No heuristics
setparam("XPRS_PRESOLVE", 0) ! No presolve
end-do
3: tree_cut_gen ! User branch-and-cut (single round)
4: do ! User branch-and-cut (several rounds)
tree_cut_gen
SEVERALROUNDS:=true
end-do
5: do ! User cut-and-branch (several rounds)
tree_cut_gen
SEVERALROUNDS:=true
TOPONLY:=true
end-do
end-case
! Parallel setup
setcallback(XPRS_CB_PRENODE, ->cb_updatebnd)
setcallback(XPRS_CB_INTSOL, ->cb_intsol)
! Solve the problem
minimize(MinCost)
!*************************************************************************
! Cut generation loop:
! get the solution values
! identify violated constraints and add them as cuts to the problem
! re-solve the modified problem
!*************************************************************************
function cb_node:boolean
declarations
ncut:integer ! Counter for cuts
cut: array(range) of linctr ! Cuts
cutid: array(range) of integer ! Cut type identification
type: array(range) of integer ! Cut constraint type
ds: real
end-declarations
returned:=false ! OPTNODE: This node is not infeasible
depth:=getparam("XPRS_NODEDEPTH")
cnt:=getparam("XPRS_CALLBACKCOUNT_OPTNODE")
if ((TOPONLY and depth<1) or (not TOPONLY and depth<=CUTDEPTH)) and
(SEVERALROUNDS or cnt<=1) then
ncut:=0
! Get the solution values
forall(t in TIMES, p in PRODUCTS) do
solprod(p,t):=getsol(produce(p,t))
solsetup(p,t):=getsol(setup(p,t))
end-do
! Search for violated constraints
forall(p in PRODUCTS,l in TIMES) do
ds:=0
forall(t in 1..l)
if (solprod(p,t) < D(p,t,l)*solsetup(p,t) + EPS) then ds += solprod(p,t)
else ds += D(p,t,l)*solsetup(p,t)
end-if
! Add the violated inequality: the minimum of the actual production
! produce(p,t) and the maximum potential production D(p,t,l)*setup(t)
! in periods 1 to l must at least equal the total demand in periods
! 1 to l.
! sum(t=1:l) min(produce(p,t), D(p,t,l)*setup(p,t)) >= D(p,1,l)
if ds < D(p,1,l) - EPS then
cut(ncut):= sum(t in 1..l)
if(solprod(p,t)<(D(p,t,l)*solsetup(p,t))+EPS, produce(p,t),
D(p,t,l)*setup(p,t)) - D(p,1,l)
cutid(ncut):= 1
type(ncut):= CT_GEQ
ncut+=1
end-if
end-do
! Add cuts to the problem
if ncut>0 then
addcuts(cutid, type, cut);
writeln("Model ", ALG, ": Cuts added : ", ncut,
" (depth ", depth, ", node ", getparam("XPRS_NODES"),
", obj. ", getparam("XPRS_LPOBJVAL"), ")")
end-if
end-if
end-function
! ****Optimizer settings for using the cut manager****
procedure tree_cut_gen
setparam("XPRS_HEUREMPHASIS", 0) ! Switch heuristics off
setparam("XPRS_CUTSTRATEGY", 0) ! Switch automatic cuts off
setparam("XPRS_PRESOLVE", 0) ! Switch presolve off
setparam("XPRS_EXTRAROWS", 5000) ! Reserve extra rows in matrix
setcallback(XPRS_CB_OPTNODE, ->cb_node) ! Set the optnode callback function
end-procedure
!*************************************************************************
! Setup for parallel solving:
! check whether cutoff update required at every node
! store and communicate any new solution found
!*************************************************************************
! Update cutoff value
function cb_updatebnd: boolean
if not isqueueempty then
repeat
Msg:= getnextevent
until isqueueempty
newcutoff:= getvalue(Msg)
cutoff:= getparam("XPRS_MIPABSCUTOFF")
writeln("Model ", ALG, ": New cutoff: ", newcutoff,
" old: ", cutoff)
if newcutoff<cutoff then
setparam("XPRS_MIPABSCUTOFF", newcutoff)
end-if
if newcutoff < getparam("XPRS_LPOBJVAL") then
returned:= true ! Node becomes infeasible
end-if
end-if
end-function
! Store and communicate new solution
procedure cb_intsol
objval:= getparam("XPRS_LPOBJVAL") ! Retrieve current objective value
cutoff:= getparam("XPRS_MIPABSCUTOFF")
writeln("Model ", ALG, ": Solution: ", objval, " cutoff: ", cutoff)
if(cutoff > objval) then
setparam("XPRS_MIPABSCUTOFF", objval)
end-if
! Get the solution values
forall(t in TIMES, p in PRODUCTS) do
solprod(p,t):=getsol(produce(p,t))
solsetup(p,t):=getsol(setup(p,t))
end-do
! Store the solution in shared memory
initializations to "bin:" + RMT + "sol_"+ALG
solprod
solsetup
end-initializations
! Send "solution found" signal
send(NEWSOL, objval)
end-procedure
end-model
Economic Lot-Sizing (ELS)
=========================
A well-known class of valid inequalities for ELS are the
(l,S)-inequalities. Let D(pq) denote the total demand in periods p
to q and y(t) be a binary variable indicating whether there is any
production in period t. For each period l and each subset of periods S
of 1 to l, the (l,S)-inequality is
sum (t=1:l | t in S) x(t) + sum (t=1:l | t not in S) D(tl) * y(t)
>= D(1l)
It says that actual production x(t) in periods included S plus maximum
potential production D(tl)*y(t) in the remaining periods (those not in
S) must at least equal total demand in periods 1 to l. Note that in
period t at most D(tl) production is required to meet demand up to
period l.
Based on the observation that
sum (t=1:l | t in S) x(t) + sum (t=1:l | t not in S) D(tl) * y(t)
>= sum (t=1:l) min(x(t), D(tl) * y(t))
>= D(1l)
it is easy to develop a separation algorithm and thus a cutting plane
algorithm based on these (l,S)-inequalities.
| |||||||||||||||||||
| © Copyright 2025 Fair Isaac Corporation. |