| |||||||||||||||
| |||||||||||||||
|
Minimum surface between boundaries Description Minimizing the surface between given boundaries with an optional obstacle.
Source Files By clicking on a file name, a preview is opened at the bottom of this page.
minsurf.mos
(!*********************************************************************
Mosel NL examples
=================
file minsurf.mos
````````````````
Convex NLP problem minimizing the surface between given
boundaries.
Set parameter OBSTACLE to 'true' to add an additional fixed
area in the center of the surface.
Based on AMPL model minsurf.mod
Source: http://www.orfe.princeton.edu/~rvdb/ampl/nlmodels/minsurf/
*** This model cannot be run with a Community Licence
for the provided data instance ***
(c) 2008 Fair Issac Corporation
author: S. Heipcke, Sep. 2008, rev. Jun. 2023
*********************************************************************!)
model "minsurf"
uses "mmxnlp"
parameters
OBSTACLE=true
N0 = 35 ! Number of points within borders
end-parameters
declarations
N = N0+1 ! Border point index
X = 0..N ! Range for x-values
Y = 0..N ! Range for y-values
HX = 2/N
HY = 2/N
GAMMA0,GAMMA2: array(X) of real ! Border points parallel to x axis
GAMMA1,GAMMA3: array(Y) of real ! Broder points parallel to y axis
end-declarations
forall(x in X) GAMMA0(x):= 1.5*x*(N-x)/(N/2)^2
forall(y in Y) GAMMA1(y):= 2*y*(N-y)/(N/2)^2
forall(x in X) GAMMA2(x):= 4*x*(N-x)/(N/2)^2
forall(y in Y) GAMMA3(y):= 2*y*(N-y)/(N/2)^2
(! Alternative border definition:
forall(x in X) GAMMA0(x):= 2*(if (x <= N/2, x, N-x)/(N/2))
forall(y in Y) GAMMA1(y):= 0*(if (y <= N/2, y, N-y)/(N/2))
forall(x in X) GAMMA2(x):= 2*(if (x <= N/2, x, N-x)/(N/2))
forall(y in Y) GAMMA3(y):= 0*(if (y <= N/2, y, N-y)/(N/2))
!)
declarations
z: array(X,Y) of mpvar ! Surface height at grid points
end-declarations
forall(x in X,y in Y) z(x,y) is_free
! Objective function
Area:= (HX*HY/2)*sum(x in X | x<N, y in Y | y<N)
( sqrt(1 + ((z(x+1,y)-z(x,y))/HX)^2 + ((z(x,y+1)-z(x,y))/HX)^2) +
sqrt(1 + ((z(x+1,y+1)-z(x,y+1))/HX)^2 + ((z(x+1,y+1)-z(x+1,y))/HX)^2) )
! Fix the boundaries
forall(x in X) z(x,0) = GAMMA0(x)
forall(y in Y) z(N,y) = GAMMA1(y)
forall(x in X) z(x,N) = GAMMA2(x)
forall(y in Y) z(0,y) = GAMMA3(y)
! Add an obstacle in the center of the area
if OBSTACLE then
forall(x,y in ceil(N*0.4)..ceil(N*0.6)) z(x,y) = GAMMA2(ceil(N/2))
end-if
! Since this is a convex problem, it is sufficient to call a local solver
setparam("xprs_nlpsolver", 1)
setparam("XNLP_verbose", true)
minimise(Area)
writeln("Solution: ", Area.sol)
forall(x in X, y in Y) writeln(x, " ", y, " ", z(x,y).sol)
end-model
| |||||||||||||||
| © Copyright 2025 Fair Isaac Corporation. |