| |||||||||||||||||
| |||||||||||||||||
|
Pre-emptive and Archimedian goal programming Description goalctr.mos: goal programming using constraints
Further explanation of this example: 'Mosel User Guide', Section 12.2 Goal Programming
Source Files By clicking on a file name, a preview is opened at the bottom of this page.
goalobj.mos
(!*******************************************************
* Mosel Example Problems *
* ====================== *
* *
* file goalobj.mos *
* ```````````````` *
* Example for the use of the Mosel language *
* (Archimedian and pre-emptive goal programming *
* using objective functions) *
* *
* (c) 2008 Fair Isaac Corporation *
* author: S. Heipcke, 2001, rev. Sep. 2022 *
*******************************************************!)
model GoalObj ! Start a new model
uses "mmxprs" ! Load the optimizer library
uses "mmsystem"
forward procedure preemptive ! Declare some procedures that are
forward procedure archimedian ! defined later
declarations
NGOALS=3 ! Number of goals
GOALS=1..NGOALS
x,y: mpvar ! Variables
Type: array(GOALS) of string ! Type of goal objectives
Sense: array(GOALS) of string ! Sense of goal objectives
Weight: array(GOALS) of real ! Weights of goals
Deviation: array(GOALS) of real ! Max. deviation from goals
Target: array(GOALS) of real ! Target (RHS) values for goals
WObj: linctr ! Objective function
Goal: array(GOALS) of linctr ! Goal constraints
end-declarations
Limit:= 42*x + 13*y <= 100 ! Define a constraint
! Define the goal objectives
Weight::[100, 1, 0.1]
Type:: ["perc", "abs", "perc"]
Sense:: ["max", "min", "max"]
Deviation:: [10, 4, 20]
Goal(1):= 5*x + 2*y - 20
Goal(2):= -3*x + 15*y - 48
Goal(3):= 1.5*x + 21*y - 3.8
archimedian ! Archimedian goal programming
preemptive ! Pre-emptive goal programming
!***********************************************************************
procedure archimedian
writeln("Archimedian:")
! Define the objective function as weighted sum of the goals
forall(g in GOALS)
if(Sense(g)="max") then
WObj-=Weight(g)*Goal(g)
else
WObj+=Weight(g)*Goal(g)
end-if
minimize(WObj) ! Solve the LP-problem
! Solution printout
writeln(" Solution: x: ", x.sol, ", y: ", y.sol)
writeln(" Goal", textfmt("Target",9), textfmt("Value",12))
forall(g in GOALS)
writeln(formattext("%4d %8s %12.6f", g, Sense(g),
Goal(g).act + Goal(g).coeff ))
end-procedure
!***********************************************************************
procedure preemptive
writeln("\nPre-emptive:")
(!
Optimize successively the goals. After optimizing a goal turn it
into a constraint.
!)
localsetparam("realfmt","%10.6f")
i:=0
while (i<NGOALS) do
i+=1
case Sense(i) of
"max": do
maximize(Goal(i)) ! Optimize the next goal
if(getprobstat<>XPRS_OPT) then
writeln("Cannot satisfy goal ",i)
break
else
Target(i):=getobjval
if (Type(i)="perc") then
Target(i)-= abs(Target(i))*Deviation(i)/100
else
Target(i)-= Deviation(i)
end-if
if(i<NGOALS) then
Goal(i):= Goal(i) >= Target(i) ! Turn goal into a constraint
else
Goal(i).type:=CT_GEQ ! Only for printout
end-if
end-if
end-do
"min": do
minimize(Goal(i)) ! Optimize the next goal
if(getprobstat<>XPRS_OPT) then
writeln("Cannot satisfy goal ",i)
break
else
Target(i):=getobjval
if (Type(i)="perc") then
Target(i)+= abs(Target(i))*Deviation(i)/100
else
Target(i)+= Deviation(i)
end-if
if(i<NGOALS) then
Goal(i):= Goal(i) <= Target(i) ! Turn goal into a constraint
else
Goal(i).type:=CT_LEQ ! Only for printout
end-if
end-if
end-do
else writeln("Unknown objective sense")
break
end-case
writeln(" Solution(", i,"): x: ", x.sol, ", y: ", y.sol, ", obj: ", getobjval)
end-do
! Some declarations for a nice printout
declarations
STypes={CT_GEQ, CT_LEQ}
ATypes: array(STypes) of string
end-declarations
ATypes::([CT_GEQ, CT_LEQ])[">=", "<="]
! Solution printout
localsetparam("realfmt","%12.6f")
writeln(" Goal", textfmt("Target",15), textfmt("Value",12))
forall(g in 1..i) do
write(formattext("%4d %3s %11.6f", g, ATypes(Goal(g).type), Target(g)))
if(g=NGOALS) then
writeln(getobjval)
else
writeln(Goal(g).act+Goal(g).coeff+Target(g))
end-if
end-do
end-procedure
end-model
| |||||||||||||||||
| © Copyright 2025 Fair Isaac Corporation. |