FICO
FICO Xpress Optimization Examples Repository
FICO Optimization Community FICO Xpress Optimization Home
Back to examples browserNext example

Folio - Embedding examples from 'Getting started'

Description
Simple embedding tasks for a portfolio optimization problem:
  • loading and running a BIM file (foliorun.cs)
  • executing a Mosel model (folioexec.cs)
  • parameterized model execution (folioparam.cs)
  • exporting a matrix (foliomat.cs)
  • accessing model results (folioobj.cs)
  • data exchange in memory (runfolio.cs,runfoliob.cs)
  • retrieving solution output from Optimizer callbacks in foliocbio.mos during optimization (runfoliocbio.cs)

folioembedcs.zip[download all files]

Source Files

Data Files





foliomemio2.mos

(!******************************************************
   Mosel Example Problems
   ======================

   file foliomemio2.mos
   ````````````````````
   Modeling a MIP problem 
   to perform portfolio optimization.

   Same model as in foliomip3.mos with
   simplified data structures (replaced arrays of structured types).
   -- Data input/output in memory --
   -- Grouping arrays with identical index sets --
   
   Run modes for this model:
   1. Stand-alone: data I/O to text files
      (run this model from Workbench or from Mosel command line) 
   2. Submodel to another Mosel model: data exchange in memory
      (run model 'runfolio2.mos' to execute this model)
   3a. C: I/O to C program folio2.c
      (compile and run C program 'folio2.c')
   3b. Java: I/O to Java program folio2.java
      (compile and run Java program 'folio2.java')
   3c. C# (Windows only): I/O to C# program folio2.cs
      (compile and run C# program 'folio2.cs')
  
  (c) 2009 Fair Isaac Corporation
      author: S.Heipcke, Feb. 2009, rev. Sep. 2018
*******************************************************!)

model "Portfolio optimization with MIP"
 uses "mmxprs"

 parameters
  MAXRISK = 1/3                      ! Max. investment into high-risk values
  MINREG = 0.2                       ! Min. investment per geogr. region
  MAXREG = 0.5                       ! Max. investment per geogr. region
  MAXSEC = 0.25                      ! Max. investment per ind. sector
  MAXVAL = 0.2                       ! Max. investment per share
  MINVAL = 0.1                       ! Min. investment per share
  MAXNUM = 15                        ! Max. number of different assets

  DATAFILE = "folio10.dat"           ! File with problem data
  OUTPUTFILE = "sol10out.dat"        ! File for solution output
  RISKDATA = "RISK"                  ! Locations of input data
  RETDATA = "RET"
  LOCDATA = "LOCTAB"
  SECDATA = "SECTAB"
  FRACBUYSOL = "FRACBUY"             ! Locations for solution output
  NUMSHARES = "NUMSHARES"
  RETSOL = "RETSOL"
  SOLSTATUS = "SOLSTATUS"
 end-parameters

 declarations
  SHARES,S: set of string            ! Set of shares
  RISK: set of string                ! Set of high-risk values among shares
  REGIONS: set of string             ! Geographical regions
  TYPES: set of string               ! Share types (ind. sectors)
  LOCTAB: dynamic array(REGIONS,SHARES) of boolean ! Shares per geogr. region
  RET: array(SHARES) of real         ! Estimated return in investment
  SECTAB: dynamic array(TYPES,SHARES) of boolean ! Shares per industry sector
 end-declarations

 initializations from DATAFILE
  RISK as RISKDATA
  RET as RETDATA
  LOCTAB as LOCDATA
  SECTAB as SECDATA
 end-initializations

 declarations
  frac: array(SHARES) of mpvar      ! Fraction of capital used per share
  buy: array(SHARES) of mpvar       ! 1 if asset is in portfolio, 0 otherwise
 end-declarations

! Objective: total return
 Return:= sum(s in SHARES) RET(s)*frac(s) 

! Limit the percentage of high-risk values
 sum(s in RISK) frac(s) <= MAXRISK

! Limits on geographical distribution
 forall(r in REGIONS) do
  sum(s in SHARES | exists(LOCTAB(r,s))) frac(s) >= MINREG
  sum(s in SHARES | exists(LOCTAB(r,s))) frac(s) <= MAXREG
 end-do 

! Diversification across industry sectors
 forall(t in TYPES) sum(s in SHARES | exists(SECTAB(t,s))) frac(s) <= MAXSEC

! Spend all the capital
 sum(s in SHARES) frac(s) = 1
 
! Upper bounds on the investment per share
 forall(s in SHARES) frac(s) <= MAXVAL

! Limit the total number of assets
 sum(s in SHARES) buy(s) <= MAXNUM

 forall(s in SHARES) do
  buy(s) is_binary                  ! Turn variables into binaries
  frac(s) <= MAXVAL*buy(s)                 ! Linking the variables
  frac(s) >= MINVAL*buy(s)                 ! Linking the variables
 end-do


! Display Optimizer log
 setparam("XPRS_verbose", true)

! Solve the problem
 maximize(Return)


! Adapt Mosel comparison tolerance to Optimizer feasibility tolerance
 setparam("zerotol", getparam("XPRS_feastol")/10)

! Solution output
 function getvalues(v: array(SHARES) of mpvar): dynamic array(S) of real
  forall(s in SHARES | v(s).sol<>0) returned(s):= v(s).sol  
 end-function
 
 initializations to OUTPUTFILE
  evaluation of Return.sol as RETSOL
  evaluation of sum(s in SHARES | buy(s).sol<>0) 1 as NUMSHARES
  [evaluation of getvalues(frac) , evaluation of getvalues(buy)] as FRACBUYSOL
  evaluation of getprobstat as SOLSTATUS
 end-initializations

end-model 

Back to examples browserNext example