| |||||||||
Folio - Embedding examples from 'Getting started' Description Simple embedding tasks for a portfolio optimization problem:
Source Files By clicking on a file name, a preview is opened at the bottom of this page. Data Files foliomemio.mos (!****************************************************** Mosel Example Problems ====================== file foliomemio.mos ``````````````````` Modeling a MIP problem to perform portfolio optimization. Same model as in foliomip3.mos with simplified data structures (replaced arrays of structured types). -- Data input/output in memory -- Run modes for this model: 1. Stand-alone: data I/O to text files (run this model from Workbench or from Mosel command line) 2. Submodel to another Mosel model: data exchange in memory (run model 'runfolio.mos' or 'runfoliopar.mos' to execute this model) 3a. C: I/O to C program runfolio.c or runfoliod.c (compile and run C program 'runfolio.c' or 'runfoliod.c') 3b. Java: I/O to Java program runfolio.java, runfoliob.java, or runfoliod.java (compile and run Java program 'runfolio.java', 'runfoliob.java', or 'runfoliod.java') 3c. (Windows only) C#: I/O to C# program runfolio.cs or runfoliob.cs (compile and run C# program 'runfolio.cs' or 'runfoliob.cs') 4. Remote execution from another Mosel model: (run model 'runfoliodistr.mos' or 'runfoliopardistr.mos' to execute this model) 5a. Remote execution from C: I/O to C program distfolio.c or distfoliopar.c (compile and run C program 'distfolio.c' or 'distfoliopar.c') 5b. Remote execution from Java: I/O to Java program distfolio.java or distfoliopar.java (compile and run Java program 'distfolio.java' or 'distfoliopar.java') (c) 2009 Fair Isaac Corporation author: S.Heipcke, Jan. 2009, rev. Sep. 2018 *******************************************************!) model "Portfolio optimization with MIP" uses "mmxprs" parameters MAXRISK = 1/3 ! Max. investment into high-risk values MINREG = 0.2 ! Min. investment per geogr. region MAXREG = 0.5 ! Max. investment per geogr. region MAXSEC = 0.25 ! Max. investment per ind. sector MAXVAL = 0.2 ! Max. investment per share MINVAL = 0.1 ! Min. investment per share MAXNUM = 15 ! Max. number of different assets DATAFILE = "folio10.dat" ! File with problem data OUTPUTFILE = "sol10out.dat" ! File for solution output RISKDATA = "RISK" ! Locations of input data RETDATA = "RET" LOCDATA = "LOCTAB" SECDATA = "SECTAB" FRACSOL = "FRAC" ! Locations for solution output BUYSOL = "BUY" NUMSHARES = "NUMSHARES" RETSOL = "RETSOL" SOLSTATUS = "SOLSTATUS" end-parameters declarations SHARES,S: set of string ! Set of shares RISK: set of string ! Set of high-risk values among shares REGIONS: set of string ! Geographical regions TYPES: set of string ! Share types (ind. sectors) LOCTAB: dynamic array(REGIONS,SHARES) of boolean ! Shares per geogr. region RET: array(SHARES) of real ! Estimated return in investment SECTAB: dynamic array(TYPES,SHARES) of boolean ! Shares per industry sector end-declarations initializations from DATAFILE RISK as RISKDATA RET as RETDATA LOCTAB as LOCDATA SECTAB as SECDATA end-initializations declarations frac: array(SHARES) of mpvar ! Fraction of capital used per share buy: array(SHARES) of mpvar ! 1 if asset is in portfolio, 0 otherwise end-declarations ! Objective: total return Return:= sum(s in SHARES) RET(s)*frac(s) ! Limit the percentage of high-risk values sum(s in RISK) frac(s) <= MAXRISK ! Limits on geographical distribution forall(r in REGIONS) do sum(s in SHARES | exists(LOCTAB(r,s))) frac(s) >= MINREG sum(s in SHARES | exists(LOCTAB(r,s))) frac(s) <= MAXREG end-do ! Diversification across industry sectors forall(t in TYPES) sum(s in SHARES | exists(SECTAB(t,s))) frac(s) <= MAXSEC ! Spend all the capital sum(s in SHARES) frac(s) = 1 ! Upper bounds on the investment per share forall(s in SHARES) frac(s) <= MAXVAL ! Limit the total number of assets sum(s in SHARES) buy(s) <= MAXNUM forall(s in SHARES) do buy(s) is_binary ! Turn variables into binaries frac(s) <= MAXVAL*buy(s) ! Linking the variables frac(s) >= MINVAL*buy(s) ! Linking the variables end-do ! Display Optimizer log setparam("XPRS_verbose", true) ! Solve the problem maximize(Return) ! Adapt Mosel comparison tolerance to Optimizer feasibility tolerance setparam("zerotol", getparam("XPRS_feastol")/10) ! Solution output function getvalues(v: array(SHARES) of mpvar): dynamic array(S) of real forall(s in SHARES | v(s).sol<>0) returned(s):= v(s).sol end-function initializations to OUTPUTFILE evaluation of Return.sol as RETSOL evaluation of sum(s in SHARES | buy(s).sol<>0) 1 as NUMSHARES evaluation of getvalues(frac) as FRACSOL evaluation of getvalues(buy) as BUYSOL evaluation of getprobstat as SOLSTATUS end-initializations end-model | |||||||||
© Copyright 2024 Fair Isaac Corporation. |