| |||||||||||||
Nonlinear trimloss problem Description Nonlinear formulation of trim loss problem solved either via the Xpress Nonlinear solvers (trimminlp.mos)
or configurable for using alternative NLP solvers (trimminnlp2.mos). Further explanation of this example: This model is discussed in Section 13.3 of the book 'J. Kallrath: Business Optimization Using Mathematical Programming - An Introduction with Case Studies and Solutions in Various Algebraic Modeling Languages' (2nd edition, Springer, Cham, 2021, DOI 10.1007/978-3-030-73237-0).
Source Files By clicking on a file name, a preview is opened at the bottom of this page.
trimminlp2.mos (!********************************************************************* Mosel Example Problems ====================== file trimminlp2.mos ``````````````````` Trim loss problem - Implementation with solver choice - Example described in section 13.3 of J. Kallrath: Business Optimization Using Mathematical Programming - An Introduction with Case Studies and Solutions in Various Algebraic Modeling Languages. 2nd edition, Springer Nature, Cham, 2021 author: S. Heipcke, October 2020 (c) Copyright 2020 Fair Isaac Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *********************************************************************!) model 'trimminlpalt' uses "nlsolv", "mmsystem" ! Solver configuration: select any (previously installed) MINLP solver ! that supports NL format parameters ! SOLVER="knitroampl" SOLVER="couenne" SOLVERPATH="" SOLVEROPTIONS="" ! Ex: Stop at 0.1% integrality gap, time limit end-parameters !******** Input data ******** declarations RPATT=1..6 ! Set of cutting patterns RWDTH=1..6 ! Set of order width types WDTH: array(RWDTH) of real ! Widths of orders DEM: array(RWDTH) of real ! Requirements CP: array(RPATT) of real ! Pattern cost CR: array(RPATT) of real ! Roll cost WMR: integer ! Width of master roll FWIDTH: integer ! Min fill width KNIFES: integer ! Max number of knifes available MAXW: array(RWDTH) of real ! Bound on the number of width in a pattern end-declarations WMR:= 2360; FWIDTH:= 2225; KNIFES:=12 WDTH::[300,280,265,240,225,208] DEM::[6,6,9,9,12,15] forall(p in RPATT) CP(p):=1 forall(p in RPATT) CR(p):=2 !******** Problem formulation ******** declarations alpha: array(RWDTH,RPATT) of mpvar ! Number of width i per pattern p muse: array(RPATT) of mpvar ! How oftern pattern is used delta: array(RPATT) of mpvar ! Indicate whether pattern is active Numpat: linctr ! Objective: number of patterns used end-declarations ! Upper bound on the number of width in a pattern forall(i in RWDTH) MAXW(i):= minlist(floor(WMR/WDTH(i)),DEM(i)) forall(i in RWDTH,p in RPATT) do alpha(i,p) is_integer alpha(i,p) <= MAXW(i) end-do ! Upper bound on pattern multiplicity MAXDEM:= max(i in RWDTH) DEM(i) forall(p in RPATT) do muse(p) is_integer muse(p) <= MAXDEM end-do forall(p in RPATT) delta(p) is_binary ! Objective function: number of patterns + number of rolls used Numpat:= sum(p in RPATT) (CP(p)*delta(p) + CR(p)*muse(p)) ! Fulfill demand exactly (nonlinear, nonconvex constraint) forall(i in RWDTH) Demand(i):= sum(p in RPATT) alpha(i,p)*muse(p) = DEM(i) ! Fit into the width of the master roll forall(p in RPATT) MRwidth(p):= sum(i in RWDTH) WDTH(i)*alpha(i,p) <= WMR ! Observe the minimal width to be filled forall(p in RPATT) MinFill(p):= sum(i in RWDTH) WDTH(i)*alpha(i,p) >= FWIDTH*delta(p) ! Limit the maximal available number of knifes forall(p in RPATT) Knifes(p):= sum(i in RWDTH) alpha(i,p) <= KNIFES ! Whether pattern p is used, that is, delta(p) = 1, else 0 forall(p in RPATT) PatternUse(p):= muse(p) <= MAXDEM*delta(p) ! Symmetry breaking: activate pattern p only when pattern p is active forall(p in RPATT | p>RPATT.first) Symmetry1(p):= delta(p) <= delta(p-1) ! Symmetry breaking: order the patterns with descending multiplicity forall(p in RPATT | p>RPATT.first) Symmetry2(p):= muse(p) <= muse(p-1) ! Linking alpha and delta variables forall(i in RWDTH,p in RPATT) Cut1(i,p):= alpha(i,p) <= MAXW(i)*delta(p) ! Pattern needs to have a positive multiplicity to be used at all forall(p in RPATT) Cut2(p):= delta(p) <= muse(p) !******** Minimize the number of patterns ******** ! Configuration of the solver setparam("nl_verbose", true) setparam("nl_solver", SOLVER) if SOLVERPATH<>"" then setparam("nl_solverpath", SOLVERPATH) end-if if SOLVEROPTIONS<>"" then setparam("nl_options", SOLVEROPTIONS) end-if ! Solve the problem minimize(Numpat) if getprobstat<>NL_OPT and getprobstat<>NL_UNF then writeln("No solution available. Solver status: ", getparam("nl_status")) else writeln("Solution: ", getobjval, ". Number of patterns=", getsol(sum(p in RPATT) delta(p)), ". Number of rolls=", sum(p in RPATT) muse(p).sol ) write(" Width ") forall(i in RWDTH) write(strfmt(WDTH(i),4)) writeln(" | Filled width") write(" (Demand)") forall(i in RWDTH) write(strfmt(DEM(i),4)) writeln("\n", "-"*60) forall(p in RPATT | muse(p).sol>0) do write("Pattern ", p, " x ", strfmt(muse(p).sol,2), ":") forall(i in RWDTH) write(strfmt(alpha(i,p).sol,4)) writeln(" | ",sum(i in RWDTH) WDTH(i)*alpha(i,p).sol) end-do end-if end-model | |||||||||||||
© Copyright 2024 Fair Isaac Corporation. |