| |||||||||||||||||||
Euler knight tour problem Description Euler knight tour problem:
Source Files By clicking on a file name, a preview is opened at the bottom of this page.
eulerkn3b.mos (!**************************************************************** CP example problems =================== file eulerkn3b.mos `````````````````` Euler knight problem. Finding a tour on a chess-board for a knight figure, such that the knight moves through every cell exactly once and returns to its origin. - Alternative implementation using a 'cycle' constraint with successor and predecessor variables - *** This model cannot be run with a Community Licence for the default data instance *** (c) 2008 Artelys S.A. and Fair Isaac Corporation Creation: 2007, rev. Mar. 2013 *****************************************************************!) model "Euler Knight Moves" uses "kalis" parameters S = 8 ! Number of rows/columns NBSOL = 1 ! Number of solutions sought end-parameters forward procedure calculate_successors(p: integer) forward procedure print_solution(sol: integer) N:= S * S ! Total number of cells setparam("KALIS_DEFAULT_LB", 0) setparam("KALIS_DEFAULT_UB", N) declarations PATH = 0..N-1 ! Cells on the chessboard succ: array(PATH) of cpvar ! Successor of cell p pred: array(PATH) of cpvar ! Predecessor of cell p predsucc: cpvarlist end-declarations ! Calculate set of possible successors forall(p in PATH) calculate_successors(p) ! Each cell is visited once, no subtours cycle(succ, pred) ! Branching strategy forall(p in PATH) do predsucc += succ(p) predsucc += pred(p) end-do cp_set_branching(assign_var(KALIS_SMALLEST_DOMAIN,KALIS_MIN_TO_MAX,predsucc)) ! Search for up to NBSOL solutions solct:= 0 while (solct<NBSOL and cp_find_next_sol) do solct+=1 cp_show_stats print_solution(solct) end-do ! **** Calculate possible successors **** procedure calculate_successors(p: integer) declarations SuccSet: set of integer ! Set of successors end-declarations xp := p div S yp := p mod S forall(q in PATH) do xq := q div S yq := q mod S delta_x := abs(xp-xq) delta_y := abs(yp-yq) if (delta_x<=2) and (delta_y<=2) and (delta_x+delta_y=3) then SuccSet +={q} end-if end-do setdomain(succ(p), SuccSet) setdomain(pred(p), SuccSet) end-procedure !**************************************************************** ! **** Solution printing **** procedure print_solution(sol: integer) writeln("Solution ", sol, ":") thispos:=0 nextpos:=getval(succ(0)) ct:=1 while (nextpos<>0) do write(thispos, if(ct mod 10 = 0, "\n ", ""), " -> ") val:=getval(succ(thispos)) thispos:=nextpos nextpos:=getval(succ(thispos)) ct+=1 end-do writeln("0") end-procedure end-model | |||||||||||||||||||
© Copyright 2024 Fair Isaac Corporation. |