![]() | |||||||||||||||||
| |||||||||||||||||
Els - An economic lot-sizing problem solved by cut-and-branch and branch-and-cut heuristics Description The version 'ELS' of this example shows how to implement cut-and-branch (= cut
generation at the root node of the MIP search) and 'ELSCut' implements a
branch-and-cut (= cut generation at the MIP search tree nodes)
algorithm using the cut manager.
Source Files By clicking on a file name, a preview is opened at the bottom of this page.
ELSManagedCuts.java // (c) 2023-2025 Fair Isaac Corporation import static com.dashoptimization.objects.Utils.scalarProduct; import static com.dashoptimization.objects.Utils.sum; import com.dashoptimization.ColumnType; import com.dashoptimization.DefaultMessageListener; import com.dashoptimization.IntHolder; import com.dashoptimization.XPRSconstants; import com.dashoptimization.XPRSenumerations; import com.dashoptimization.objects.LinExpression; import com.dashoptimization.objects.LinTermMap; import com.dashoptimization.objects.Variable; import com.dashoptimization.objects.XpressProblem; import com.dashoptimization.objects.XpressProblem.CallbackAPI.CutRoundCallback; /** Demonstrates how to implement cutting planes as part of a MIP * branch-and-bound search using the cutround callback. * * Cuts are added as user cuts using XpressProblem.addManagedCut(). * * Economic lot sizing problem. Solved by adding (l,S)-inequalities * in a branch-and-cut heuristic (using the cutround callback). * * ELS considers production planning over a horizon of T periods. In period t, * t=1,...,T, there is a given demand DEMAND[p,t] that must be satisfied by * production produce[p,t] in period t and by inventory carried over * from previous periods. * There is a set-up cost SETUPCOST[t] associated with production in * period t and the total production capacity per period is limited. The unit * production cost in period t is PRODCOST[p,t]. There is no * inventory or stock-holding cost. * * A well-known class of valid inequalities for ELS are the * (l,S)-inequalities. Let D(p,q) denote the demand in periods p * to q and y(t) be a binary variable indicating whether there is any * production in period t. For each period l and each subset of periods S * of 1 to l, the (l,S)-inequality is * <pre> * sum (t=1:l | t in S) x(t) + sum (t=1:l | t not in S) D(t,l) * y(t) * >= D(1,l) * </pre> * * It says that actual production x(t) in periods included S plus maximum * potential production D(t,l)*y(t) in the remaining periods (those not in * S) must at least equal total demand in periods 1 to l. Note that in * period t at most D(t,l) production is required to meet demand up to * period l. * * Based on the observation that * <pre> * sum (t=1:l | t in S) x(t) + sum (t=1:l | t not in S) D(t,l) * y(t) * >= sum (t=1:l) min(x(t), D(t,l) * y(t)) * >= D(1,l) * </pre> * it is easy to develop a separation algorithm and thus a cutting plane * algorithm based on these (l,S)-inequalities. */ public class ELSManagedCuts { /** Tolerance for satisfiability. */ private static final double EPS = 1e-6; /** Number of time periods. */ private static final int DIM_TIMES = 15; /** Number of products to produce. */ private static final int DIM_PRODUCTS = 4; /** Demand per product (first dim) and time period (second dim). */ private static final int[][] DEMAND = new int[][]{ new int[]{2, 3, 5, 3, 4, 2, 5, 4, 1, 3, 4, 2, 3, 5, 2}, new int[]{3, 1, 2, 3, 5, 3, 1, 2, 3, 3, 4, 5, 1, 4, 1}, new int[]{3, 5, 2, 1, 2, 1, 3, 3, 5, 2, 2, 1, 3, 2, 3}, new int[]{2, 2, 1, 3, 2, 1, 2, 2, 3, 3, 2, 2, 3, 1, 2} }; /** Setup cost. */ private static final double[] SETUPCOST = new double[]{ 17, 14, 11, 6, 9, 6, 15, 10, 8, 7, 12, 9, 10, 8, 12 }; /** Production cost per product (first dim) and time period (second dim). */ private static final double[][] PRODCOST = new double[][]{ new double[]{5, 3, 2, 1, 3, 1, 4, 3, 2, 2, 3, 1, 2, 3, 2}, new double[]{1, 4, 2, 3, 1, 3, 1, 2, 3, 3, 3, 4, 4, 2, 2}, new double[]{3, 3, 3, 4, 4, 3, 3, 3, 2, 2, 1, 1, 3, 3, 3}, new double[]{2, 2, 2, 3, 3, 3, 4, 4, 4, 3, 3, 2, 2, 2, 3} }; /** Capacity. */ private static int[] CAP = new int[]{ 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12 }; /** Cut round callback for separating our cutting planes. */ static class Callback implements CutRoundCallback { private Variable[][] produce; private Variable[][] setup; private double[][][] sumDemand; public Callback(Variable[][] produce, Variable[][] setup, double[][][] sumDemand) { this.produce = produce; this.setup = setup; this.sumDemand = sumDemand; } public void cutRound(XpressProblem prob, int ifxpresscuts, IntHolder action) { // Apply only one round of cutting on each node. // Because the CutRound callback is fired *before* a round of // cutting, the CUTROUNDS attribute will start from 0 on the first // invocation of the callback. if (prob.attributes().getCutRounds() >= 1) return; // Get the solution vector. // Xpress will only fire the CutRound callback when a solution is // available, so there is no need to check whether a solution is // available. double[] sol = prob.getCallbackSolution(); // Search for violated constraints : the minimum of the actual // production produce[p][t] and the maximum potential production // D[p][t][l]*setup[p][t] in periods 0 to l must at least equal // the total demand in periods 0 to l. // sum(t=1:l) min(prod[p][t], D[p][t][l]*setup[p][t]) >= D[p][0][l] int nCutsAdded = 0; for (int p = 0; p < DIM_PRODUCTS; p++) { for (int l = 0; l < DIM_TIMES; l++) { double sum = 0.0; for (int t = 0; t <= l; t++) { if (produce[p][t].getValue(sol) < sumDemand[p][t][l] * setup[p][t].getValue(sol) + EPS) { sum += produce[p][t].getValue(sol); } else { sum += sumDemand[p][t][l] * setup[p][t].getValue(sol); } } if (sum < sumDemand[p][0][l] - EPS) { // Create the violated cut. LinExpression cut = LinExpression.create(); for (int t = 0; t <= l; t++) { if (produce[p][t].getValue(sol) < sumDemand[p][t][l] * setup[p][t].getValue(sol)) { cut.addTerm(1.0, produce[p][t]); } else { cut.addTerm(sumDemand[p][t][l], setup[p][t]); } } // Give the cut to Xpress to manage. // It will automatically be presolved. prob.addManagedCut(true, cut.geq(sumDemand[p][0][l])); ++nCutsAdded; // If we modified the problem in the callback, Xpress // will automatically trigger another roound of cuts, // so there is no need to set the action return // argument. } } } if (nCutsAdded > 0) { System.out.printf("Cuts added: %d%n", nCutsAdded); } } } public static void main(String[] args) { try (XpressProblem prob = new XpressProblem()) { prob.callbacks.addMessageCallback(DefaultMessageListener::console); // Create an economic lot sizing problem. // Calculate demand D(p, s, t) as the demand for product p from // time s to time t(inclusive). double[][][] sumDemand = new double[DIM_PRODUCTS][DIM_TIMES][DIM_TIMES]; for (int p = 0; p < DIM_PRODUCTS; p++) { for (int s = 0; s < DIM_TIMES; s++) { double thisSumDemand = 0.0; for (int t = s; t < DIM_TIMES; t++) { thisSumDemand += DEMAND[p][t]; sumDemand[p][s][t] = thisSumDemand; } } } Variable[][] produce = prob.addVariables(DIM_PRODUCTS, DIM_TIMES) .withName((p,t) -> "produce(" + p + "," + t + ")") .toArray(); Variable[][] setup = prob.addVariables(DIM_PRODUCTS, DIM_TIMES) .withType(ColumnType.Binary) .withName((p,t) -> "setup(" + p + "," + t + ")") .toArray(); // Add the objective function : // MinCost:= sum(t in TIMES) (SETUPCOST(t) * sum(p in PRODUCTS) setup(p,t) + // sum(p in PRODUCTS) PRODCOST(p, t) *produce(p, t) ) prob.setObjective(sum(DIM_TIMES, DIM_PRODUCTS, (t, p) -> setup[p][t].mul(SETUPCOST[t]).plus(produce[p][t].mul(PRODCOST[p][t])))); // Add constraints. // Production in periods 0 to t must satisfy the total demand // during this period of time, for all t in [0,T[ // forall(p in PRODUCTS, t in TIMES) // Dem(t) : = sum(s in 1..t) produce(p,s) >= sum(s in 1..t) DEMAND(s) prob.addConstraints(DIM_PRODUCTS, DIM_TIMES, (p, t) -> sum(t + 1, s -> produce[p][s]).geq(sumDemand[p][0][t])); // If there is production during t then there is a setup in t : // forall(p in PRODUCTS, t in TIMES) // ProdSetup(t) : = produce(t) <= D(t,TIMES) * setup(t) for (int p = 0; p < DIM_PRODUCTS; ++p) { for (int t = DIM_TIMES - 1; t >= 0; --t) { prob.addConstraint(produce[p][t].leq(setup[p][t].mul(sumDemand[p][t][DIM_TIMES - 1]))); } } // Capacity limits : // forall(t in TIMES) Capacity(t) : = sum(p in PRODUCTS) produce(p, t) <= CAP(t) prob.addConstraints(DIM_TIMES, t -> sum(DIM_PRODUCTS, p -> produce[p][t]).leq(CAP[t])); // Add a CutRound callback for separating our cuts. prob.callbacks.addCutRoundCallback(new Callback(produce, setup, sumDemand)); prob.writeProb("elsmanagedcuts.lp"); prob.optimize(); if (prob.attributes().getSolveStatus() == XPRSenumerations.SolveStatus.COMPLETED && prob.attributes().getSolStatus() == XPRSenumerations.SolStatus.OPTIMAL) { System.out.println("Solved problem to optimality."); } else { System.out.printf("Failed to solve problem with solvestatus %s and solstatus %s%n", prob.attributes().getSolveStatus(), prob.attributes().getSolStatus()); } } } }
| |||||||||||||||||
© Copyright 2025 Fair Isaac Corporation. |