![]() | |||||||||||||||||
| |||||||||||||||||
Els - An economic lot-sizing problem solved by cut-and-branch and branch-and-cut heuristics Description The version 'ELS' of this example shows how to implement cut-and-branch (= cut
generation at the root node of the MIP search) and 'ELSCut' implements a
branch-and-cut (= cut generation at the MIP search tree nodes)
algorithm using the cut manager.
Source Files By clicking on a file name, a preview is opened at the bottom of this page.
ELS.cpp // (c) 2024-2024 Fair Isaac Corporation /** * Economic lot sizing, ELS, problem. Solved by adding (l,S)-inequalities in * several rounds looping over the root node. * * ELS considers production planning over a horizon of T periods. In period t, * t=1,...,T, there is a given demand DEMAND[t] that must be satisfied by * production prod[t] in period t and by inventory carried over from previous * periods. There is a set-up up cost SETUPCOST[t] associated with production in * period t. The unit production cost in period t is PRODCOST[t]. There is no * inventory or stock-holding cost. */ #include <chrono> #include <iostream> #include <xpress.hpp> using namespace xpress; using namespace xpress::objects; using xpress::objects::utils::scalarProduct; using xpress::objects::utils::sum; using std::chrono::duration_cast; using std::chrono::steady_clock; double const EPS = 1e-6; int const T = 6; /* Number of time periods */ /* Data */ std::vector<double> DEMAND{1, 3, 5, 3, 4, 2}; /* Demand per period */ std::vector<double> SETUPCOST{17, 16, 11, 6, 9, 6}; /* Setup cost / period */ std::vector<double> PRODCOST{5, 3, 2, 1, 3, 1}; /* Prod. cost / period */ std::vector<std::vector<double>> D(T, std::vector<double>(T)); /* Total demand in periods t1 - t2 */ /** Create the model in P. * @param p The Xpress Solver instance in which the model is created. * @param prod Array to store the production variables. * @param setup Array to store the setup variables. */ void modEls(XpressProblem &p, std::vector<Variable> &prod, std::vector<Variable> &setup) { for (int s = 0; s < T; s++) for (int t = 0; t < T; t++) for (int k = s; k <= t; k++) D[s][t] += DEMAND[k]; // Variables prod = p.addVariables(T) .withType(ColumnType::Continuous) .withName([](auto t) { return "prod" + std::to_string(t + 1); }) .toArray(); setup = p.addVariables(T) .withType(ColumnType::Binary) .withName([](auto t) { return "setup" + std::to_string(t + 1); }) .toArray(); // Objective: Minimize total cost p.setObjective( sum(scalarProduct(setup, SETUPCOST), scalarProduct(prod, PRODCOST)), ObjSense::Minimize); // Constraints // Production in period t must not exceed the total demand for the // remaining periods; if there is production during t then there // is a setup in t // for all t in [0,T[ // prod[t] <= setup[t] * D[t][T-1] p.addConstraints(T, [&](auto t) { return prod[t] <= setup[t] * D[t][T - 1]; }); // Production in periods 0 to t must satisfy the total demand // during this period of time // for all t in [0,T[ // sum(s in [0,t+1[) prod[s] >= D[0][t] p.addConstraints(T, [&](auto t) { return sum(t + 1, [&](auto s) { return prod[s]; }) >= D[0][t]; }); p.writeProb("ELS.lp", "l"); } /** * Cut generation loop at the top node: * solve the LP and save the basis * get the solution values * identify and set up violated constraints * load the modified problem and load the saved basis * @param p The Xpress Solver instance that is populated with the model. * @param prod Production variables. * @param setup Setup variables. */ void solveEls(XpressProblem &p, std::vector<Variable> &prod, std::vector<Variable> &setup) { p.callbacks.addMessageCallback(XpressProblem::console); /* Disable automatic cuts - we use our own */ p.controls.setCutStrategy(XPRS_CUTSTRATEGY_NONE); /* Switch presolve off */ p.controls.setPresolve(XPRS_PRESOLVE_NONE); int ncut = 0, npass = 0, npcut = 0; steady_clock::time_point starttime = steady_clock::now(); std::vector<double> sol; do { p.writeProb("model" + std::to_string(npass) + ".lp"); npass++; npcut = 0; // Solve the LP-problem p.lpOptimize(); if (p.attributes.getSolStatus() != SolStatus::Optimal) throw std::runtime_error("failed to optimize with status " + to_string(p.attributes.getSolStatus())); // Get the solution values: sol = p.getSolution(); // Search for violated constraints: for (int l = 0; l < T; l++) { double ds = 0.0; for (int t = 0; t <= l; t++) { if (prod[t].getValue(sol) < D[t][l] * setup[t].getValue(sol) + EPS) { ds += prod[t].getValue(sol); } else { ds += D[t][l] * setup[t].getValue(sol); } } // Add the violated inequality: the minimum of the actual production // prod[t] and the maximum potential production D[t][l]*setup[t] in // periods 0 to l must at least equal the total demand in periods 0 to l. // sum(t=1:l) min(prod[t], D[t][l]*setup[t]) >= D[0][l] if (ds < D[0][l] - EPS) { Expression cut = sum(l + 1, [&](auto t) { if (prod[t].getValue(sol) < D[t][l] * setup[t].getValue(sol) + EPS) return 1.0 * prod[t]; else return D[t][l] * setup[t]; }); p.addConstraint(cut >= D[0][l]); ncut++; npcut++; } } steady_clock::time_point endtime = steady_clock::now(); std::cout << "Iteration " << npass << ", " << duration_cast<std::chrono::milliseconds>(endtime - starttime) .count() * 1e-3 << " sec" << ", objective value: " << p.attributes.getObjVal() << ", cuts added: " << npcut << " (total " << ncut << ")" << std::endl; if (npcut == 0) std::cout << "Optimal integer solution found:" << std::endl; } while (npcut > 0); // Print out the solution: for (int t = 0; t < T; t++) { std::cout << "Period " << (t + 1) << ": prod" << prod[t].getValue(sol) << " (demand: " << DEMAND[t] << ", cost: " << PRODCOST[t] << ")" << ", setup " << setup[t].getValue(sol) << " (cost " << SETUPCOST[t] << ")" << std::endl; } } int main() { XpressProblem prob; std::vector<Variable> prod; std::vector<Variable> setup; modEls(prob, prod, setup); // Model the problem solveEls(prob, prod, setup); // Solve the problem return 0; }
| |||||||||||||||||
© Copyright 2025 Fair Isaac Corporation. |