| |||||||||||||||
'cycle' constraint: formulating a TSP problem Description 'cycle' constraints can be used to formulate problems of the TSP (traveling sales person) type, including cyclic scheduling problems with setup times. Two model versions showing definition of callbacks via subroutine references or by name. Further explanation of this example: 'Xpress Kalis Mosel Reference Manual'
Source Files By clicking on a file name, a preview is opened at the bottom of this page.
cycle2.mos (!**************************************************************** CP example problems =================== file cycle2.mos ``````````````` Cycle constraint example, solving a small TSP problem. - Specifying callback routines by name - (c) 2008 Artelys S.A. and Fair Isaac Corporation Creation: 2005, rev. Sep. 2018 *****************************************************************!) model "TSP" uses "kalis" parameters S = 14 ! Number of cities to visit end-parameters declarations TC : array(0..3*S) of integer end-declarations ! TSP DATA TC :: [ 1 , 1647, 9610, 2 , 1647, 9444, 3 , 2009, 9254, 4 , 2239, 9337, 5 , 2523, 9724, 6 , 2200, 9605, 7 , 2047, 9702, 8 , 1720, 9629, 9 , 1630, 9738, 10, 1405, 9812, 11, 1653, 9738, 12, 2152, 9559, 13, 1941, 9713, 14, 2009, 9455] forward public procedure print_solution forward public function bestregret(Vars: cpvarlist): integer forward public function bestneighbor(x: cpvar): integer setparam("KALIS_DEFAULT_LB", 0) setparam("KALIS_DEFAULT_UB", S-1) declarations CITIES = 0..S-1 ! Set of cities succ: array(CITIES) of cpvar ! Array of successor variables prev: array(CITIES) of cpvar ! Array of predecessor variables end-declarations setparam("KALIS_DEFAULT_UB", 10000) declarations dist_matrix: array(CITIES,CITIES) of integer ! Distance matrix totaldist: cpvar ! Total distance of the tour succpred: cpvarlist ! Variable list for branching end-declarations ! Setting the variable names forall(p in CITIES) do setname(succ(p),"succ("+p+")") setname(prev(p),"prev("+p+")") end-do ! Add succesors and predecessors to succpred list for branching forall(p in CITIES) succpred += succ(p) forall(p in CITIES) succpred += prev(p) ! Build the distance matrix forall(p1,p2 in CITIES | p1<>p2) dist_matrix(p1,p2) := round(sqrt((TC(3*p2+1) - TC(3*p1+1)) * (TC(3*p2+1) - TC(3*p1+1)) + (TC(3*p2+2) - TC(3*p1+2)) * (TC(3*p2+2) - TC(3*p1+2)))) ! Set the name of the distance variable setname(totaldist, "total_distance") ! Posting the cycle constraint cycle(succ, prev, totaldist, dist_matrix) ! Print all solutions found cp_set_solution_callback("print_solution") ! Set the branching strategy cp_set_branching(assign_and_forbid("bestregret", "bestneighbor", succpred)) setparam("KALIS_MAX_COMPUTATION_TIME", 10) ! Find the optimal tour if cp_minimize(totaldist) then if getparam("KALIS_SEARCH_LIMIT")=KALIS_SLIM_BY_TIME then writeln("Search time limit reached") else writeln("Done!") end-if end-if !--------------------------------------------------------------- ! **** Solution printing **** public procedure print_solution writeln("TOUR LENGTH = ", getsol(totaldist)) thispos:=getsol(succ(0)) nextpos:=getsol(succ(thispos)) write(" Tour: ", thispos) while (nextpos <> getsol(succ(0))) do write(" -> ", nextpos) thispos:=nextpos nextpos:=getsol(succ(thispos)) end-do writeln end-procedure !--------------------------------------------------------------- ! **** Variable choice **** public function bestregret(Vars: cpvarlist): integer ! Get the number of elements of "Vars" listsize:= getsize(Vars) minindex := 0 mindist := 0 ! Set on uninstantiated variables forall(i in 1..listsize) do if not is_fixed(getvar(Vars,i)) then if i <= S then bestn := getlb(getvar(Vars,i)) v:=bestn mval:=dist_matrix(i-1,v) while (v < getub(getvar(Vars,i))) do v:=getnext(getvar(Vars,i),v) if dist_matrix(i-1,v)<=mval then mval:=dist_matrix(i-1,v) bestn:=v end-if end-do sbestn := getlb(getvar(Vars,i)) mval2:= 10000000 v:=sbestn if (dist_matrix(i-1,v)<=mval2 and v <> bestn) then mval2:=dist_matrix(i-1,v) sbestn:=v end-if while (v < getub(getvar(Vars,i))) do v:=getnext(getvar(Vars,i),v) if (dist_matrix(i-1,v)<=mval2 and v <> bestn) then mval2:=dist_matrix(i-1,v) sbestn:=v end-if end-do else bestn := getlb(getvar(Vars,i)) v:=bestn mval:=dist_matrix(v,i-S-1) while (v < getub(getvar(Vars,i))) do v:=getnext(getvar(Vars,i),v) if dist_matrix(v,i-S-1)<=mval then mval:=dist_matrix(v,i-S-1) bestn:=v end-if end-do sbestn := getlb(getvar(Vars,i)) mval2:= 10000000 v:=sbestn if (dist_matrix(v,i-S-1)<=mval2 and v <> bestn) then mval2:=dist_matrix(v,i-S-1) sbestn:=v end-if while (v < getub(getvar(Vars,i))) do v:=getnext(getvar(Vars,i),v) if (dist_matrix(v,i-S-1)<=mval2 and v <> bestn) then mval2:=dist_matrix(v,i-S-1) sbestn:=v end-if end-do end-if dsize := getsize(getvar(Vars,i)) rank := integer(10000/ dsize +(mval2 - mval)) if mindist<= rank then mindist := rank minindex := i end-if end-if end-do returned := minindex end-function !--------------------------------------------------------------- ! **** Value choice: choose value resulting in smallest distance public function bestneighbor(x: cpvar): integer issucc := false idx := -1 forall (i in CITIES) if (is_same(succ(i),x)) then idx:= i issucc := true end-if forall (i in CITIES) if (is_same(prev(i),x)) then idx:= i end-if if issucc then returned:= getlb(x) v:=getlb(x) mval:=dist_matrix(idx,v) while (v < getub(x)) do v:=getnext(x,v) if dist_matrix(idx,v)<=mval then mval:=dist_matrix(idx,v) returned:=v end-if end-do else returned:= getlb(x) v:=getlb(x) mval:=dist_matrix(v,idx) while (v < getub(x)) do v:=getnext(x,v) if dist_matrix(v,idx)<=mval then mval:=dist_matrix(v,idx) returned:=v end-if end-do end-if end-function end-model | |||||||||||||||
© Copyright 2024 Fair Isaac Corporation. |