FICO
FICO Xpress Optimization Examples Repository
FICO Optimization Community FICO Xpress Optimization Home
Back to examples browserPrevious exampleNext example

Mining and process industries

Description
Problem name and type, featuresDifficultyRelated examples
A‑1 Production of alloys: Blending problem

formulation of blending constraints; data with numerical indices, solution printout, if-then, getsol
* blending_graph.mos
A‑2 Animal food production: Blending problem

formulation of blending constraints; data with string indices, as, formatted solution printout, use of getsol with linear expressions, strfmt
* a1alloy.mos
A‑3 Refinery : Blending problem

formulation of blending constraints; sparse data with string indices, dynamic initialization, union of sets
** a2food.mos
A‑4 Cane sugar production : Minimum cost flow (in a bipartite graph)

mo ceil, is_binary, formattext
* e2minflow.mos, mincostflow_graph.mos
A‑5 Opencast mining: Minimum cost flow

encoding of arcs, solving LP-relaxation only, array of set
** a4sugar.mos
A‑6 Production of electricity: Dispatch problem

inline if, is_integer, looping over optimization problem solving
**


Further explanation of this example: 'Applications of optimization with Xpress-MP', Chapter 6: Mining and process industries (blending problems)

mosel_app_1.zip[download all files]

Source Files

Data Files





a6electr.mos

(!******************************************************
   Mosel Example Problems
   ======================

   file a6electr.mos
   `````````````````
   Production of electricity

   Four types of power generators are available to meet daily
   electricity demands and up to 20% above. Each type of 
   generator has a set maximum capacity and minimum power output.
   A generator can only be started or stopped at the beginning 
   of a time period. The objective is to determine which 
   generators should be used in each period so that total daily 
   cost is minimized.   

   Three variable arrays are required to determine when to 'start'
   generators, which ones are set to 'work' in each time period, and
   the energy productionl ('padd') of each type above the minimum 
   output level. 'work' is defined as integer. 'start' is the 
   difference between 'work' this period and 'work' last period and 
   therefore is automatically integer.

   (c) 2008-2022 Fair Isaac Corporation
       author: S. Heipcke, Mar. 2002, rev. Mar. 2022
*******************************************************!)

model "A-6 Electricity production"
 uses "mmxprs", "mmsystem"
 
 declarations
  NT = 7
  TIME = 1..NT                       ! Time periods
  TYPES = 1..4                       ! Power generator types

  LEN, DEM: array(TIME) of integer   ! Length and demand of time periods
  PMIN,PMAX: array(TYPES) of integer ! Min. & max output of a generator type
  CSTART: array(TYPES) of integer    ! Start-up cost of a generator
  CMIN: array(TYPES) of integer      ! Hourly cost of gen. at min. output
  CADD: array(TYPES) of real         ! Cost/hour/MW of prod. above min. level
  AVAIL: array(TYPES) of integer     ! Number of generators per type

  start: array(TYPES,TIME) of mpvar  ! No. of gen.s started in a period
  work: array(TYPES,TIME) of mpvar   ! No. of gen.s working during a period
  padd: array(TYPES,TIME) of mpvar   ! Production above min. output level
 end-declarations
 
 initializations from 'a6electr.dat'
  LEN DEM PMIN PMAX CSTART CMIN CADD AVAIL
 end-initializations 
 
! Objective function: total daily cost
 Cost:= sum(p in TYPES, t in TIME) (CSTART(p)*start(p,t) +
          LEN(t)*(CMIN(p)*work(p,t) + CADD(p)*padd(p,t))) 
                                   
! Number of generators started per period and per type
 forall(p in TYPES, t in TIME) 
  start(p,t) >= work(p,t) - if(t>1, work(p,t-1), work(p,NT))

! Limit on power production above minimum level
 forall(p in TYPES, t in TIME) padd(p,t) <= (PMAX(p)-PMIN(p))*work(p,t)

! Satisfy demands
 forall(t in TIME) sum(p in TYPES) (PMIN(p)*work(p,t) + padd(p,t)) >= DEM(t)

! Security reserve of 20%
 forall(t in TIME) sum(p in TYPES) PMAX(p)*work(p,t) >= 1.20*DEM(t)

! Limit number of available generators; numbers of generators are integer
 forall(p in TYPES, t in TIME) do
  work(p,t) <= AVAIL(p)
  work(p,t) is_integer
 end-do

! Solve the problem
 minimize(Cost)

! Solution printing
 writeln("Daily cost: ", getobjval)

 write(strfmt("Time period ",-20))
 ct:=0
 forall(t in TIME) do
  write(formattext("%5d-%2d", ct, ct+LEN(t)))
  ct+=LEN(t)
 end-do 

 forall(p in TYPES) do
  write(formattext("\nType %d%-14s", p, " No. working ")); 
  forall(t in TIME) write(strfmt(work(p,t).sol,8))
  write("\n", strfmt("Total output ",20)); 
  forall(t in TIME) write(strfmt(getsol((PMIN(p)*work(p,t) + padd(p,t))),8))
  write("\n", strfmt("of which add.",20)); 
  forall(t in TIME) write(strfmt(padd(p,t).sol,8))
 end-do
 writeln

end-model

Back to examples browserPrevious exampleNext example