FICO Xpress Optimization Examples Repository
FICO Optimization Community FICO Xpress Optimization Home
Back to examples browserPrevious exampleNext example

Numerical differentation and accuracy

Nonlinear example demonstrates the solver sensitibility to errors introduced by finite differences

Further explanation of this example: 'Xpress NonLinear Reference Manual'[download all files]

Source Files


! This example demonstrates the solver sensitibility to errors introduced by
! numerical derivatives
! This model should be run twice, with different settings for XNLP_SOLVER
! This example is a version of the Polygon4 example.
! This example demonstrates a particular non-linear optimization concept as related
! to Xpress NonLinear.
! The version of the example is for Xpress 7.5.
!  (c) 2013 Fair Isaac Corporation
model "Polygon 4"
 uses "mmxnlp"

  N=5                               ! Number of vertices
  SOLVER=0                          ! 0: SLP, 1: Knitro
  RN = 1..N
  Area: nlctr
  rho : array(RN) of mpvar          ! Distance of vertex from the base point
  theta : array(RN) of mpvar        ! Angle from x-axis
  D: array(RN,RN) of nlctr          ! Limit on side length
  FunctionArg: list of nlctr        ! User function arguments
  AreaFunction: userfunc            ! User function definition

! Objective: sum of areas. Definition of a user function
 AreaFunction := userfuncExcel("polygonsheet.xls", "Sheet1")

! Create function arguments
! Excel functions use their first columns as input: use a list to ensure correct order
 forall (i in 1..N-1) do
  FunctionArg += [nlctr(rho(i))]
  FunctionArg += [nlctr(theta(i))]

! Use the Excel user function in a formula for the objective
 Area := F(AreaFunction,FunctionArg)

! Bounds and start values for decision variables
 forall (i in 1..N-1) do
  rho(i) >= 0.1
  rho(i) <= 1
  setinitval(rho(i),4*i*(N + 1 - i)/((N+1)^2))
! Third side of all triangles <= 1
 forall (i in 1..N-2, j in i+1..N-1) 
  D(i,j) := rho(i)^2 + rho(j)^2 - rho(i)*rho(j)*2*cos(theta(j)-theta(i)) <= 1
! Vertices in increasing order
 forall (i in 2..N-1) theta(i) >= theta(i-1) +.01
! Boundary conditions (last vertex above x-axis)
 theta(N-1) <= M_PI

! Uncomment to display user function info
! userfuncinfo(AreaFunction)

! Optional parameter settings
 setparam("xnlp_verbose", true)         ! Enable XNLP output log
 setparam("xnlp_solver", SOLVER)        ! Select the solver
 setparam("xslp_excelvisible", true)

! Solve the problem

! Solution output
 writeln("Area = ", getobjval)
 forall (i in 1..N-1)
  writeln("V",i,": r=",getsol(rho(i))," theta=",getsol(theta(i)))


Back to examples browserPrevious exampleNext example