| |||||||||
Folio - Examples from 'Getting Started' Description Different versions of a portfolio optimization problem. Basic modelling and solving tasks:
Source Files By clicking on a file name, a preview is opened at the bottom of this page. Data Files foliolp.java /******************************************************** * Xpress-BCL Java Example Problems * ================================ * * file foliolp.java * ````````````````` * Modeling a small LP problem * to perform portfolio optimization. * * (c) 2008-2024 Fair Isaac Corporation * author: S.Heipcke, 2003, rev. Dec. 2011 ********************************************************/ import com.dashoptimization.*; import java.io.*; public class foliolp { static final int NSHARES = 10; /* Number of shares */ static final int NRISK = 5; /* Number of high-risk shares */ static final int NNA = 4; /* Number of North-American shares */ static final double[] RET = {5, 17, 26, 12, 8, 9, 7, 6, 31, 21}; /* Estimated return in investment */ static final int[] RISK = {1, 2, 3, 8, 9}; /* High-risk values among shares */ static final int[] NA = {0, 1, 2, 3}; /* Shares issued in N.-America */ static final String[] LPSTATUS = { "not loaded", "optimal", "infeasible", "worse than cutoff", "unfinished", "unbounded", "cutoff in dual", "unsolved", "nonconvex" }; public static void main(String[] args) { try (XPRBprob p = new XPRBprob("FolioLP"); /* Initialize BCL and create a new problem */ XPRBexprContext context = new XPRBexprContext() /* Release XPRBexpr instances at end of block. */) { int s; XPRBexpr Risk, Na, Return, Cap; XPRBvar[] frac; /* Fraction of capital used per share */ /* Create the decision variables */ frac = new XPRBvar[NSHARES]; for (s = 0; s < NSHARES; s++) frac[s] = p.newVar("frac"); /*, XPRB.PL, 0, 0.3); */ /* Objective: total return */ Return = new XPRBexpr(); for (s = 0; s < NSHARES; s++) Return.add(frac[s].mul(RET[s])); p.setObj(Return); /* Set the objective function */ /* Limit the percentage of high-risk values */ Risk = new XPRBexpr(); for (s = 0; s < NRISK; s++) Risk.add(frac[RISK[s]]); p.newCtr("Risk", Risk.lEql(1.0 / 3)); /* Equivalent: XPRBctr CRisk; CRisk = p.newCtr("Risk"); for(s=0;s<NRISK;s++) CRisk.addTerm(frac[RISK[s]], 1); CRisk.setType(XPRB.L); CRisk.addTerm(1.0/3); */ /* Minimum amount of North-American values */ Na = new XPRBexpr(); for (s = 0; s < NNA; s++) Na.add(frac[NA[s]]); p.newCtr("NA", Na.gEql(0.5)); /* Spend all the capital */ Cap = new XPRBexpr(); for (s = 0; s < NSHARES; s++) Cap.add(frac[s]); p.newCtr("Cap", Cap.eql(1)); /* Upper bounds on the investment per share */ for (s = 0; s < NSHARES; s++) frac[s].setUB(0.3); /* Export matrix to a file */ try { p.exportProb(XPRB.MPS, "Folio"); p.setSense(XPRB.MAXIM); p.exportProb(XPRB.LP, "Folio"); } catch (IOException e) { System.err.println(e.getMessage()); System.exit(1); } /* Disable all BCL and Optimizer message printing, except error messages */ /* p.setMsgLevel(1); */ /* Solve the problem */ p.setSense(XPRB.MAXIM); p.lpOptimize(""); System.out.println("Problem status: " + LPSTATUS[p.getLPStat()]); /* Solution printing */ System.out.println("Total return: " + p.getObjVal()); for (s = 0; s < NSHARES; s++) System.out.println(s + ": " + frac[s].getSol() * 100 + "%"); } } } | |||||||||
© Copyright 2024 Fair Isaac Corporation. |