| |||||||||
Folio - Examples from 'Getting Started' Description Different versions of a portfolio optimization problem. Basic modelling and solving tasks:
Source Files By clicking on a file name, a preview is opened at the bottom of this page. Data Files foliolp.cs /******************************************************** Xpress-BCL C# Example Problems ============================== file foliolp.cs ``````````````` Modeling a small LP problem to perform portfolio optimization. (c) 2008-2024 Fair Isaac Corporation authors: S.Heipcke, D.Brett. ********************************************************/ using System; using System.Text; using System.IO; using BCL; namespace Examples { public class TestUGFolioLP { const int NSHARES = 10; // Number of shares const int NRISK = 5; // Number of high-risk shares const int NNA = 4; // Number of North-American shares double[] RET = {5,17,26,12,8,9,7,6,31,21}; // Estimated return in investment int[] RISK = {1,2,3,8,9}; // High-risk values among shares int[] NA = {0,1,2,3}; // Shares issued in N.-America public static void Main() { XPRB.init(); int s; XPRBprob p = new XPRBprob("FolioLP"); // Initialize a new problem in BCL XPRBexpr Risk,Na,Return,Cap; XPRBvar[] frac = new XPRBvar[NSHARES]; // Fraction of capital used per share TestUGFolioLP TestInstance = new TestUGFolioLP(); // Create the decision variables for(s=0;s<NSHARES;s++) frac[s] = p.newVar("frac"); //, XPRB_PL, 0, 0.3); // Objective: total return Return = new XPRBexpr(); for (s = 0; s < NSHARES; s++) Return += TestInstance.RET[s] * frac[s]; p.setObj(p.newCtr("Objective", Return)); // Set the objective function // Limit the percentage of high-risk values Risk = new XPRBexpr(); for (s = 0; s < NRISK; s++) Risk += frac[TestInstance.RISK[s]]; p.newCtr("Risk", Risk <= 1.0/3); /* Equivalent: XPRBctr CRisk; CRisk = p.newCtr("Risk"); for(s=0;s<NRISK;s++) CRisk.addTerm(frac[RISK[s]], 1); CRisk.setType(XPRB_L); CRisk.addTerm(1.0/3); */ // Minimum amount of North-American values Na = new XPRBexpr(); for (s = 0; s < NNA; s++) Na += frac[TestInstance.NA[s]]; p.newCtr("NA", Na >= 0.5); // Spend all the capital Cap = new XPRBexpr(); for(s=0;s<NSHARES;s++) Cap += frac[s]; p.newCtr("Cap", Cap == 1); // Upper bounds on the investment per share for(s=0;s<NSHARES;s++) frac[s].setUB(0.3); // Export matrix to a file /* p.exportProb(XPRB_MPS, "Folio"); p.setSense(XPRB_MAXIM); p.exportProb(XPRB_LP, "Folio"); */ // Disable all BCL and Optimizer message printing, except error messages // p.setMsgLevel(1); // Solve the problem p.setSense(BCLconstant.XPRB_MAXIM); p.lpOptimize(); /* Solve the LP-problem */ string[] LPSTATUS = {"not loaded", "optimal", "infeasible", "worse than cutoff", "unfinished", "unbounded", "cutoff in dual"}; System.Console.WriteLine("Problem status: " + LPSTATUS[p.getLPStat()]); // Solution printing System.Console.WriteLine("Total return: " + p.getObjVal()); for(s=0;s<NSHARES;s++) System.Console.WriteLine(s + ": " + frac[s].getSol()*100 + "%"); return; } } } | |||||||||
© Copyright 2024 Fair Isaac Corporation. |