| |||||||||
Folio - Examples from 'Getting Started' Description Different versions of a portfolio optimization problem. Basic modelling and solving tasks:
Source Files By clicking on a file name, a preview is opened at the bottom of this page. Data Files folioqp.cpp /******************************************************** Xpress-BCL C++ Example Problems =============================== file folioqp.cpp ```````````````` Modeling a small QP problem to perform portfolio optimization. -- 1. QP: minimize variance 2. MIQP: limited number of assets --- (c) 2008-2024 Fair Isaac Corporation author: S.Heipcke, Aug. 2003, rev. Mar. 2011 ********************************************************/ #include <iostream> #include <cstdio> #include "xprb_cpp.h" using namespace std; using namespace ::dashoptimization; #define DATAFILE XPRBDATAPATH "/GS/foliocppqp.dat" #define TARGET 9 // Target yield #define MAXNUM 4 // Max. number of different assets #define NSHARES 10 // Number of shares #define NNA 4 // Number of North-American shares double RET[] = {5,17,26,12,8,9,7,6,31,21}; // Estimated return in investment int NA[] = {0,1,2,3}; // Shares issued in N.-America double VAR[NSHARES][NSHARES]; // Variance/covariance matrix of // estimated returns int main(int argc, char **argv) { int s,t; XPRBprob p("FolioQP"); // Initialize a new problem in BCL XPRBexpr Na,Return,Cap,Num,Variance; XPRBvar frac[NSHARES]; // Fraction of capital used per share XPRBvar buy[NSHARES]; // 1 if asset is in portfolio, 0 otherwise FILE *datafile; // Read `VAR' data from file datafile=fopen(DATAFILE,"r"); for(s=0;s<NSHARES;s++) XPRBreadarrlinecb(XPRB_FGETS, datafile, 200, "g ", VAR[s], NSHARES); fclose(datafile); // **** First problem: unlimited number of assets **** // Create the decision variables for(s=0;s<NSHARES;s++) frac[s] = p.newVar(XPRBnewname("frac(%d)",s+1), XPRB_PL, 0, 0.3); // Objective: mean variance for(s=0;s<NSHARES;s++) for(t=0;t<NSHARES;t++) Variance += VAR[s][t]*frac[s]*frac[t]; p.setObj(Variance); // Set the objective function // Minimum amount of North-American values for(s=0;s<NNA;s++) Na += frac[NA[s]]; p.newCtr(Na >= 0.5); // Spend all the capital for(s=0;s<NSHARES;s++) Cap += frac[s]; p.newCtr(Cap == 1); // Target yield for(s=0;s<NSHARES;s++) Return += RET[s]*frac[s]; p.newCtr(Return >= TARGET); // Solve the problem p.setSense(XPRB_MINIM); p.lpOptimize(""); // Solution printing cout << "With a target of " << TARGET << " minimum variance is " << p.getObjVal() << endl; for(s=0;s<NSHARES;s++) cout << s << ": " << frac[s].getSol()*100 << "%" << endl; // **** Second problem: limit total number of assets **** // Create the decision variables for(s=0;s<NSHARES;s++) buy[s] = p.newVar(XPRBnewname("buy(%d)",s+1), XPRB_BV); // Limit the total number of assets for(s=0;s<NSHARES;s++) Num += buy[s]; p.newCtr(Num <= MAXNUM); // Linking the variables for(s=0;s<NSHARES;s++) p.newCtr(frac[s] <= buy[s]); // Solve the problem p.mipOptimize(""); // Solution printing cout << "With a target of " << TARGET << " and at most " << MAXNUM << " assets, minimum variance is " << p.getObjVal() << endl; for(s=0;s<NSHARES;s++) cout << s << ": " << frac[s].getSol()*100 << "% (" << buy[s].getSol() << ")" << endl; return 0; } | |||||||||
© Copyright 2024 Fair Isaac Corporation. |