| |||||||||||||||||
Els - An economic lot-sizing problem solved by cut-and-branch and branch-and-cut heuristics Description The version 'xbels' of this example shows how to implement cut-and-branch (= cut
generation at the root node of the MIP search) and 'xbelsc' implements a
branch-and-cut (= cut generation at the MIP search tree nodes)
algorithm using the cut manager.
Source Files By clicking on a file name, a preview is opened at the bottom of this page.
xbels.cs /********************************************************/ /* Xpress-BCL C# Example Problems */ /* ============================== */ /* */ /* file xbels.cs */ /* ````````````` */ /* Example for the use of Xpress-BCL */ /* (Economic lot sizing, ELS, problem, solved by */ /* adding(l,S)-inequalities) in several rounds */ /* looping over the root node) */ /* */ /* ELS considers production planning over a horizon */ /* of T periods. In period t, t=1,...,T, there is a */ /* given demand DEMAND[t] that must be satisfied by */ /* production prod[t] in period t and by inventory */ /* carried over from previous periods. There is a */ /* set-up up cost SETUPCOST[t] associated with */ /* production in period t. The unit production cost */ /* in period t is PRODCOST[t]. There is no inventory */ /* or stock-holding cost. */ /* */ /* (c) 2008-2024 Fair Isaac Corporation */ /* authors: S.Heipcke, D.Brett. */ /********************************************************/ using System; using System.Text; using System.IO; using Optimizer; using BCL; namespace Examples { public class TestAdvEls { const double EPS = 1e-6; const int T = 6; /* Number of time periods */ /****DATA****/ int[] DEMAND = { 1, 3, 5, 3, 4, 2}; /* Demand per period */ int[] SETUPCOST = {17,16,11, 6, 9, 6}; /* Setup cost per period */ int[] PRODCOST = { 5, 3, 2, 1, 3, 1}; /* Production cost per period */ int[,] D = new int[T,T]; /* Total demand,periods t1-t2 */ XPRBvar[] prod = new XPRBvar[T]; /* Production in period t */ XPRBvar[] setup = new XPRBvar[T]; /* Setup in period t */ XPRBprob p = new XPRBprob("Els"); /* Initialize a new BCL prob */ /*********************************************************************/ public void modEls() { int s,t,k; XPRBexpr cobj,le; for(s=0;s<T;s++) for(t=0;t<T;t++) for(k=s;k<=t;k++) D[s,t] += DEMAND[k]; /****VARIABLES****/ for(t=0;t<T;t++) { prod[t]=p.newVar("prod" + (t+1)); setup[t]=p.newVar("setup" + (t+1), BCLconstant.XPRB_BV); } /****OBJECTIVE****/ cobj = new XPRBexpr(); for(t=0;t<T;t++) /* Minimize total cost */ cobj += SETUPCOST[t]*setup[t] + PRODCOST[t]*prod[t]; p.setObj(p.newCtr("Objective", cobj)); /****CONSTRAINTS****/ /* Production in period t must not exceed the total demand for the remaining periods; if there is production during t then there is a setup in t */ for(t=0;t<T;t++) p.newCtr("Production", prod[t] <= D[t,T-1]*setup[t]); /* Production in periods 0 to t must satisfy the total demand during this period of time */ for(t=0;t<T;t++) { le = new XPRBexpr(0); for(s=0;s<=t;s++) le += prod[s]; p.newCtr("Demand", le >= D[0,t]); } } /*********************************************************************/ /* Cut generation loop at the top node: */ /* solve the LP and save the basis */ /* get the solution values */ /* identify and set up violated constraints */ /* load the modified problem and load the saved basis */ /*********************************************************************/ public void solveEls() { double objval; /* Objective value */ int t,l; int starttime; int ncut, npass, npcut; /* Counters for cuts and passes */ /* Solution values for var.s prod & setup */ double[] solprod = new double[T]; double[] solsetup = new double[T]; double ds; XPRBbasis basis; XPRBexpr le; XPRSprob xprsp = p.getXPRSprob(); starttime=XPRB.getTime(); /* Disable automatic cuts - we use our own */ xprsp.CutStrategy = 0; /* Switch presolve off */ xprsp.Presolve = 0; ncut = npass = 0; do { npass++; npcut = 0; p.lpOptimize("p"); /* Solve the LP */ basis = p.saveBasis(); /* Save the current basis */ objval = p.getObjVal(); /* Get the objective value */ /* Get the solution values: */ for(t=0;t<T;t++) { solprod[t]=prod[t].getSol(); solsetup[t]=setup[t].getSol(); } /* Search for violated constraints: */ for(l=0;l<T;l++) { for (ds=0.0, t=0; t<=l; t++) { if(solprod[t] < D[t,l]*solsetup[t] + EPS) ds += solprod[t]; else ds += D[t,l]*solsetup[t]; } /* Add the violated inequality: the minimum of the actual production prod[t] and the maximum potential production D[t][l]*setup[t] in periods 0 to l must at least equal the total demand in periods 0 to l. sum(t=1:l) min(prod[t], D[t][l]*setup[t]) >= D[0][l] */ if(ds < D[0,l] - EPS) { le = new XPRBexpr(0); for(t=0;t<=l;t++) { if (solprod[t] < D[t,l]*solsetup[t] + EPS) le += prod[t]; else le += D[t,l]*setup[t]; } p.newCtr("cut" + (ncut+1), le >= D[0,l]); ncut++; npcut++; } } System.Console.WriteLine("Pass " + npass + " (" + (XPRB.getTime()-starttime)/1000.0 + " sec), objective value " + objval + ", cuts added: " + npcut + " (total " + ncut + ")"); if(npcut==0) System.Console.Write("Optimal integer solution found:\n"); else { p.loadMat(); /* Reload the problem */ p.loadBasis(basis); /* Load the saved basis */ basis.reset(); /* No need to keep basis any longer */ } } while(npcut>0); /* Print out the solution: */ for(t=0;t<T;t++) System.Console.WriteLine("Period " + (t+1) + ": prod " + prod[t].getSol() + " (demand: " + DEMAND[t] + ", cost: " + PRODCOST[t] + "), setup " + setup[t].getSol() + " (cost: " + SETUPCOST[t] + ")"); } /*********************************************************************/ public static void Main() { XPRB.init(); TestAdvEls TestInstance = new TestAdvEls(); TestInstance.modEls(); /* Model the problem */ TestInstance.solveEls(); /* Solve the problem */ return; } } } | |||||||||||||||||
© Copyright 2024 Fair Isaac Corporation. |