| |||||||||
Basic embedding tasks Description
Source Files By clicking on a file name, a preview is opened at the bottom of this page. Data Files transport.mos (!****************************************************** Mosel User Guide Example Problems ================================= file transport.mos `````````````````` Using dynamic arrays. (c) 2008 Fair Isaac Corporation author: S.Heipcke, 2001, rev. June 2018 *******************************************************!) model Transport uses "mmxprs" public declarations REGION: set of string ! Set of customer regions PLANT: set of string ! Set of plants DEMAND: array(REGION) of real ! Demand at regions PLANTCAP: array(PLANT) of real ! Production capacity at plants PLANTCOST: array(PLANT) of real ! Unit production cost at plants TRANSCAP: dynamic array(PLANT,REGION) of real ! Capacity on each route plant->region DISTANCE: dynamic array(PLANT,REGION) of real ! Distance of each route plant->region FUELCOST: real ! Fuel cost per unit distance flow: dynamic array(PLANT,REGION) of mpvar ! Flow on each route end-declarations initializations from 'transprt.dat' DEMAND [PLANTCAP,PLANTCOST] as 'PLANTDATA' [DISTANCE,TRANSCAP] as 'ROUTES' FUELCOST end-initializations ! Create the flow variables that exist forall(p in PLANT, r in REGION | exists(TRANSCAP(p,r)) ) create(flow(p,r)) ! Objective: minimize total cost MinCost:= sum(p in PLANT, r in REGION | exists(flow(p,r))) (FUELCOST * DISTANCE(p,r) + PLANTCOST(p)) * flow(p,r) ! Limits on plant capacity forall(p in PLANT) sum(r in REGION) flow(p,r) <= PLANTCAP(p) ! Satisfy all demands forall(r in REGION) sum(p in PLANT) flow(p,r) = DEMAND(r) ! Bounds on flows forall(p in PLANT, r in REGION | exists(flow(p,r))) flow(p,r) <= TRANSCAP(p,r) minimize(MinCost) ! Solve the problem end-model | |||||||||
© Copyright 2024 Fair Isaac Corporation. |