FICO
FICO Xpress Optimization Examples Repository
FICO Optimization Community FICO Xpress Optimization Home
Back to examples browserPrevious example

Folio - remote execution of optimization models

Description
Various XPRD program versions running the memory I/O version of the 'Folio' portfolio optimization example from the 'Getting Started' guide.
  • runfoliodistr.[c|java] (requires: foliomemio.mos, folio10.dat): run an optimization model and retrieve detailed solution info, defining a file manager for data exchange in memory (XPRD version of runfoliodistr.mos)
  • distfolio.[c|java] (requires: foliomemio.mos, folio250.dat): run an optimization model and retrieve detailed solution info, reading binary solution files
  • distfoliopar.[c|java] (requires: foliomemio.mos, folio250.dat): run several optimization models on different remote Mosel instances and retrieve detailed solution info, reading binary solution files (XPRD version of runfoliopardistr.mos)
  • distfoliocbioev.[c|java] (requires: foliocbioev.mos, folio250.dat): retrieve solution info during optimization model run, coordination via events


Source Files

Data Files





foliomemio.mos

(!******************************************************
   Mosel Example Problems
   ======================

   file foliomemio.mos
   ```````````````````
   Modeling a MIP problem 
   to perform portfolio optimization.

   Same model as in foliomip3.mos with
   simplified data structures (replaced arrays of structured types).
   -- Data input/output in memory --
   
   Run modes for this model:
   1. Stand-alone: data I/O to text files
      (run this model from Workbench or from Mosel command line) 
   2. Submodel to another Mosel model: data exchange in memory
      (run model 'runfolio.mos' or 'runfoliopar.mos' to execute this model)
   3a. C: I/O to C program runfolio.c or runfoliod.c
      (compile and run C program 'runfolio.c' or 'runfoliod.c')
   3b. Java: I/O to Java program runfolio.java, runfoliob.java, or
      runfoliod.java
      (compile and run Java program 'runfolio.java', 'runfoliob.java',
      or 'runfoliod.java')
   3c. (Windows only) C#: I/O to C# program runfolio.cs or runfoliob.cs
      (compile and run C# program 'runfolio.cs' or 'runfoliob.cs')
   4. Remote execution from another Mosel model: 
      (run model 'runfoliodistr.mos' or 'runfoliopardistr.mos' to execute 
      this model)   
   5a. Remote execution from C: I/O to C program distfolio.c or distfoliopar.c
      (compile and run C program 'distfolio.c' or 'distfoliopar.c')
   5b. Remote execution from Java: I/O to Java program distfolio.java or
      distfoliopar.java
      (compile and run Java program 'distfolio.java' or 'distfoliopar.java')
   
  (c) 2009 Fair Isaac Corporation
      author: S.Heipcke, Jan. 2009, rev. Sep. 2018
*******************************************************!)

model "Portfolio optimization with MIP"
 uses "mmxprs"

 parameters
  MAXRISK = 1/3                      ! Max. investment into high-risk values
  MINREG = 0.2                       ! Min. investment per geogr. region
  MAXREG = 0.5                       ! Max. investment per geogr. region
  MAXSEC = 0.25                      ! Max. investment per ind. sector
  MAXVAL = 0.2                       ! Max. investment per share
  MINVAL = 0.1                       ! Min. investment per share
  MAXNUM = 15                        ! Max. number of different assets

  DATAFILE = "folio10.dat"           ! File with problem data
  OUTPUTFILE = "sol10out.dat"        ! File for solution output
  RISKDATA = "RISK"                  ! Locations of input data
  RETDATA = "RET"
  LOCDATA = "LOCTAB"
  SECDATA = "SECTAB"
  FRACSOL = "FRAC"                   ! Locations for solution output
  BUYSOL = "BUY"
  NUMSHARES = "NUMSHARES"
  RETSOL = "RETSOL"
  SOLSTATUS = "SOLSTATUS"
 end-parameters

 declarations
  SHARES,S: set of string            ! Set of shares
  RISK: set of string                ! Set of high-risk values among shares
  REGIONS: set of string             ! Geographical regions
  TYPES: set of string               ! Share types (ind. sectors)
  LOCTAB: dynamic array(REGIONS,SHARES) of boolean ! Shares per geogr. region
  RET: array(SHARES) of real         ! Estimated return in investment
  SECTAB: dynamic array(TYPES,SHARES) of boolean ! Shares per industry sector
 end-declarations

 initializations from DATAFILE
  RISK as RISKDATA
  RET as RETDATA
  LOCTAB as LOCDATA
  SECTAB as SECDATA
 end-initializations

 declarations
  frac: array(SHARES) of mpvar      ! Fraction of capital used per share
  buy: array(SHARES) of mpvar       ! 1 if asset is in portfolio, 0 otherwise
 end-declarations

! Objective: total return
 Return:= sum(s in SHARES) RET(s)*frac(s) 

! Limit the percentage of high-risk values
 sum(s in RISK) frac(s) <= MAXRISK

! Limits on geographical distribution
 forall(r in REGIONS) do
  sum(s in SHARES | exists(LOCTAB(r,s))) frac(s) >= MINREG
  sum(s in SHARES | exists(LOCTAB(r,s))) frac(s) <= MAXREG
 end-do 

! Diversification across industry sectors
 forall(t in TYPES) sum(s in SHARES | exists(SECTAB(t,s))) frac(s) <= MAXSEC

! Spend all the capital
 sum(s in SHARES) frac(s) = 1
 
! Upper bounds on the investment per share
 forall(s in SHARES) frac(s) <= MAXVAL

! Limit the total number of assets
 sum(s in SHARES) buy(s) <= MAXNUM

 forall(s in SHARES) do
  buy(s) is_binary                  ! Turn variables into binaries
  frac(s) <= MAXVAL*buy(s)                 ! Linking the variables
  frac(s) >= MINVAL*buy(s)                 ! Linking the variables
 end-do


! Display Optimizer log
 setparam("XPRS_verbose", true)

! Solve the problem
 maximize(Return)


! Adapt Mosel comparison tolerance to Optimizer feasibility tolerance
 setparam("zerotol", getparam("XPRS_feastol")/10)

! Solution output
 function getvalues(v: array(SHARES) of mpvar): dynamic array(S) of real
  forall(s in SHARES | v(s).sol<>0) returned(s):= v(s).sol  
 end-function
 
 initializations to OUTPUTFILE
  evaluation of Return.sol as RETSOL
  evaluation of sum(s in SHARES | buy(s).sol<>0) 1 as NUMSHARES
  evaluation of getvalues(frac) as FRACSOL
  evaluation of getvalues(buy) as BUYSOL
  evaluation of getprobstat as SOLSTATUS
 end-initializations

end-model 

Back to examples browserPrevious example