FICO
FICO Xpress Optimization Examples Repository
FICO Optimization Community FICO Xpress Optimization Home
Back to examples browserPrevious exampleNext example

Solving a non-fixed Mosel model using a REST webservice, from Mosel

Description
In this example, the Xpress Executor should first be configured with the runzippedsubmodel.mos model. Then, you run the blendxe.mos model locally; this uses REST webservice requests to send the blend3c model and blend.csv file to the Xpress Executor and remotely solve the model using this, then downloads and displays the results. This demonstrates how the Xpress Executor can be used to run many different models. This example requires a local installation of Xpress.

executor_rest_mosel_nonfixed.zip[download all files]

Source Files
By clicking on a file name, a preview is opened at the bottom of this page.
runzippedsubmodel.mos[download]
blendxe.mos[download]
blend3c.mos[download]

Data Files





blend3c.mos

(!******************************************************
   Mosel User Guide Example Problems
   ================================= 

   file blend3c.mos
   ````````````````
   Reading data from an Excel spreadsheet
   - using the CSV driver -
   
   (c) 2013 Fair Isaac Corporation
       author: S. Heipcke, Jan. 2013
*******************************************************!)

model "Blend 3" 
 uses  "mmxprs", "mmsheet" 

 parameters
  INPUTFILE="../data/blend.csv"
  RESULTFILE="result.csv"
 end-parameters

 declarations
  REV = 125                      ! Unit revenue of product
  MINGRADE = 4                   ! Minimum permitted grade of product
  MAXGRADE = 5                   ! Maximum permitted grade of product
  ORES = 1..2                    ! Range of ores

  COST: array(ORES) of real      ! Unit cost of ores
  AVAIL: array(ORES) of real     ! Availability of ores
  GRADE: array(ORES) of real     ! Grade of ores (measured per unit of mass)

  use: array(ORES) of mpvar      ! Quantities of ores used
 end-declarations

!*** Read data from spreadsheet blend.csv ***
! Spreadsheet range contains data only (no header line):
 initializations from "mmsheet.csv:"+INPUTFILE
  [COST,AVAIL,GRADE] as "[B3:E4]"    ! or: "[R3C2:R4C5]"
 end-initializations

(! Or (spreadsheet range includes a header line as with ODBC):
 initializations from "mmsheet.csv:"+INPUTFILE
  [COST,AVAIL,GRADE] as "skiph;[B2:E4]" 
 end-initializations
!)

! Objective: maximize total profit
 Profit:= sum(o in ORES) (REV-COST(o))* use(o)

! Lower and upper bounds on ore quality
 sum(o in ORES) (GRADE(o)-MINGRADE)*use(o) >= 0
 sum(o in ORES) (MAXGRADE-GRADE(o))*use(o) >= 0

! Set upper bounds on variables
 forall(o in ORES) use(o) <= AVAIL(o)

 maximize(Profit)                 ! Solve the LP-problem

 ! Print out the solution
 writeln("Solution:\n Objective: ", getobjval)
 forall(o in ORES)  writeln(" use(" + o + "): ", getsol(use(o)))

 ! Write solution to CSV file
 declarations
  solvalues: array(ORES) of real
 end-declarations
 forall (o in ORES) solvalues(o) := getsol(use(o))
 initializations to "mmsheet.csv:"+RESULTFILE
  solvalues as "grow;[A1:B1]"
 end-initializations

end-model

Back to examples browserPrevious exampleNext example