FICO
FICO Xpress Optimization Examples Repository
FICO Optimization Community FICO Xpress Optimization Home
Back to examples browserPrevious exampleNext example

'cumulative' and 'disjunctive' constraints for scheduling and planning problems

Description
  • cumulative.mos: using the 'cumulative' constraint to formulate a scheduling problem with resource constraints (renewable resource with discrete capacity)
  • disjunctive.mos: using the 'disjunctive' constraint for implementing a sequencing problem (single-maching scheduling minimizing the total weighted tardiness.
  • resource_capacity.mos: using 'task' and 'resource' objects to model a cumulative resource relation (renewable resource with different capacity levels over time).
  • resource_coupled_setup_times.mos: specifying setup times between pairs of tasks assigned to the same resource.
Further explanation of this example: 'Xpress Kalis Reference Manual'


Source Files





resource_capacity.mos

(!****************************************************************
   CP example problems
   ===================
   
   file resource_capacity.mos
   ``````````````````````````
   Setting capacity of a resource over time

   (c) 2008 Artelys S.A. and Fair Isaac Corporation

*****************************************************************!)
model "Resource capacity"  
 uses "kalis"
 
 declarations  
  A, B, C : cptask            ! Declaration of tasks
  resource : cpresource       ! Declaration of resource
 end-declarations

 setname(A,"A"); setname(B,"B"); setname(C,"C")

! The resource is a cumulative resource with maximum capacity 6
 set_resource_attributes(resource, KALIS_DISCRETE_RESOURCE, 6)

! Setting the resource capacity in the interval 0..2 to 3
 setcapacity(resource, 0, 2, 3)
! Setting the resource capacity in the interval 3..4 to 2
 setcapacity(resource, 3, 4, 2)
! Setting the resource capacity in time period 5 to 1
 setcapacity(resource, 5, 5, 1)

! Setting the task durations
 set_task_attributes(A, 1) 
 set_task_attributes(B, 2)
 set_task_attributes(C, 3)

! Setting the resource requirements of the tasks
 requires(A, 1, resource)
 requires(B, 2, resource)
 requires(C, 3, resource)
 
! Find the optimal schedule (minimizing the makespan)
 if cp_schedule(getmakespan) <> 0 then	
  cp_show_sol
 else
  writeln("no solution found") 		
 end-if

end-model

Back to examples browserPrevious exampleNext example